Skip to main content

Next generation single molecule protein fluorescence

Objective

Fluorescence techniques provide powerful means to study single protein machineries. Single molecule observation of Fluorescence Resonance Energy Transfer (FRET) has become an important tool for probing structure, distances, dynamics, physicochemical properties and size of purified (in vitro) protein complexes. Super-resolution techniques provide complementary spatial information about proteins in live (in vivo) specimen. Although these techniques have become very popular because of their high sensitivity, their throughput is limited by large statistical sampling requirements, complex sample preparation procedures and/or laborious data acquisition workflows. Here, I propose to design a unified single molecule approach by engineering ultrafast, semi-synthetic protein modification techniques and fluorescent readouts into nano/microfluidic hybrid devices. The development of an automated all-in-one Lab-on-a-Chip platform will dramatically improve throughput of single molecule fluorescence techniques. The technology will provide a multiparameter readout of molecular protein mechanisms across time, resolution and complexity scales in a generalised workflow. To demonstrate the power of the new platform, I will apply it to a mechanistic study of the multifunctionality of intrinsically disordered proteins (IDPs), which are vital to cellular function and associated with many disease mechanisms. The polymeric properties of IDPs enable them to populate a variety of states and engage with various cellular binding partners, thus exceeding the sampling limit of existing single molecule technologies. The new method will blur the boundaries between in cell superresolution microscopy and biochemical single molecule studies and unleash the true power of single molecule protein science for a range of applications in analytical sciences, drug discovery, biotechnology, systems biology and fundamental biomedical research.

Field of science

  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins

Call for proposal

ERC-2014-CoG
See other projects for this call

Funding Scheme

ERC-COG - Consolidator Grant

Host institution

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Address
Saarstrasse 21
55122 Mainz
Germany
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 542 673,46

Beneficiaries (2)

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Germany
EU contribution
€ 542 673,46
Address
Saarstrasse 21
55122 Mainz
Activity type
Higher or Secondary Education Establishments
EUROPEAN MOLECULAR BIOLOGY LABORATORY
Germany
EU contribution
€ 1 454 316,54
Address
Meyerhofstrasse 1
69117 Heidelberg
Activity type
Research Organisations