Objective
“With a user-centric design, we will contribute to next-generation District Heating & Cooling systems”
The OPTi project aspires to create a long-lasting impact by rethinking the way DHC systems are architected and controlled. The overarching goal is to create business benefit for the industry as well as to ensure optimal end-consumer satisfaction.
OPTi will deliver methodologies and tools that will enable accurate modelling, analysis and control of current and envisioned DHC systems. The methodology will be deployed both on a complete system level, and on the level of a building(s).
OPTi will treat the DHC system as a system subject to dynamic control, and will treat thermal energy as a resource to be controlled for DHC systems towards saving energy and reducing peak loads. This will lead to the most environmentally-friendly way of utilizing energy sources, thus reducing the reliance on additional boilers running on oil and/or electricity and overall providing a socio-economically sustainable environment.
OPTi will help energy companies to operate both today’s and future DHC systems in an optimal way:
• System level: We envision opportunities for SMEs to provide new services/solutions
• House level: More intelligent home DHC control systems like remote control and the consumer “virtual knob” (
• General: We foresee that the OPTi framework will enable engineers to design and plan DHC
Luleå Energi AB invests 45 MEUR (2014-2018) in their DHC to meet the requirements from the expanding Luleå City. This will enhance the system and allow for new solutions to be deployed and is directly beneficial for this project.
• Saving 30% of energy for water and heating on a system level
• Saving 30-40% of peak consumption on houses/clusters of houses
• Promote ways of operating today’s and future DH/DC systems in more optimized and environmentally friendly way including alternative energy sources and energy storage methods
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systems
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- engineering and technologymechanical engineeringthermodynamic engineering
- social scienceseconomics and businessbusiness and managementbusiness models
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
(opens in new window) H2020-EE-2014-2015
See other projects for this callSub call
H2020-EE-2014-2-RIA
Funding Scheme
RIA - Research and Innovation actionCoordinator
971 87 Lulea
Sweden