Objective
SPICY is a collaborative research project associating 5 industrials partners (3 large groups and 2 SME) with 8 academic and research centres to the multidisciplinary development of a new generation of Li-ion batteries meeting the expectations of electrical vehicle end-users, including performances, safety, cost, recyclability and lifetime. For this purpose, SPICY will consider the development of new chemistry materials, cell architectures and packaging with the support of understanding and modelling activities. SPICY will address the whole value chain until the implementation of manufacturing.
SPICY will focus on polyanionic phosphates for the cathode material. LiFePO4 is well known as a safer and more durable cathode material. Unfortunately, its energy density is low due to the electrochemical potential of Fe. One objective of SPICY will be to bind metals having a higher potential than Fe, allowing an increase of the material potential, and thus a higher energy. Regarding the anode material, SPICY will study two chemistries. Graphite is used in current Li-ion cells and remains one of the major anode materials for the next generation of Li-ion cells. Silicon is appropriate for high energy cell applications but has lower cyclability. Silicon will be investigated through new synthesis process methods providing nanoparticles and core-shell structures to improve particle stability.
Active and passive components will be harmonized for a higher energy density i.e: polyanionic phosphate /graphite up to 200 Wh/kg, and polyanionic/Si up to 230 Wh/kg. In addition, three cells architectures and packaging will be investigated. The thermal behaviour of these cells will be studied in ageing tests in order to model Li-ion cells. Finally, the industrial environment will be considered and SPICY solution will be assessed so as to optimise cost and to integrate eco-design, thereby supporting the future development of a strong industrial base in this field.
Fields of science
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- natural scienceschemical scienceselectrochemistryelectric batteries
- social sciencessocial geographytransportelectric vehicles
- engineering and technologynanotechnologynano-materials
- natural scienceschemical sciencesinorganic chemistrymetalloids
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
75015 PARIS 15
France
See on map
Participants (14)
71000 MACON
See on map
76131 Karlsruhe
See on map
3364 Leudelange
See on map
80333 Muenchen
See on map
Participation ended
4480 ENGIS
See on map
8600 Dubendorf
See on map
20014 San Sebastian
See on map
Participation ended
38400 SAINT MARTIN D HERES CEDEX
See on map
01100 Bellignat
See on map
78052 Villingen Schwenning
See on map
2400 Mol
See on map
Participation ended
38420 DOMENE
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
52428 Julich
See on map
4480 Engis
See on map