Objective There are more than thirty thousand accelerators in the world starting from small-scale linear accelerators used for medical applications and in industry, large-scale third and fourth generation light sources used to probe the molecular and atomic properties of matter, and ending with giant “atom-smashers” such as Large Hadron Collider used to unlock the secrets of creation. Operation of these machines would simply be impossible without a comprehensive set of non-invasive diagnostics equipment revealing the properties of the beam and how it behaves in the machine. A vast majority of non-invasive diagnostics devices is based on electromagnetic (EM) radiation generated by charged particles passing by a condensed medium. On the other hand large-scale light sources utilising synchrotron radiation are very expensive and compete with compact accelerator based light generators affordable by a small industrial company or a university. Polarization Radiation appearing when a fast charged particle passes by a material is a recognized candidate for being used in compact light sources generating intense THz radiation with a very broad spectrum. Its characteristics are very sensitive to various beam parameters as well, which create an opportunity to develop non-invasive diagnostics. Dr. Konstantin Lekomtsev is a promising young researcher and an expert in EM radiation simulations. As a Marie Curie fellow within European ITN – DITANET he received a unique training and achieved a PhD degree. Using his mobility experience Konstantin moved to a National Accelerator Laboratory in Japan, where he has become one of the leading experts in radiation physics. By moving to the UK he will transfer his knowledge and expertise to the members of John Adams Institute, develop a new open simulation code based on GDfidl advanced EM simulation package, and setup a new experimental programme in Daresbury Lab to probe the simulations and apply them for developing diagnostics for LHC. Fields of science natural sciencesphysical sciencestheoretical physicsparticle physicsparticle acceleratorengineering and technologymechanical engineeringvehicle engineeringaerospace engineeringsatellite technologynatural sciencesmathematicspure mathematicsgeometrynatural sciencescomputer and information sciencessoftwaresoftware applicationssimulation softwarenatural sciencesphysical sciencesopticslaser physics Keywords Polarization Radiation Cherenkov Radiation Particle Beam Diagnostics microwaves Advanced electromagnetic simulations Accelerator Physics Radiation transportation and detection Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2014-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF) Call for proposal H2020-MSCA-IF-2014 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE Net EU contribution € 195 454,80 Address Egham hill university of london TW20 0EX Egham United Kingdom See on map Region South East (England) Surrey, East and West Sussex West Surrey Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00