Objective
Hematite is a promising photoanode material for harvesting solar energy by splitting water into hydrogen and oxygen. It has a favorable bandgap energy (2.1 eV), good catalytic activity for water oxidation, low cost, is chemically stable in alkaline solutions and environmentally friendly. However, its water splitting efficiency is limited by electron-hole recombination length and it produces a below threshold photovoltage. The key to increasing the recombination length is supressing defects such as grain boundaries or surface roughness of the photoanode. The second issue is successfully resolved by coupling the photoelectrolytic cell to a photovoltaic cell, a so-called tandem cell with theoretically higher efficiency owing to optimal use of the solar spectrum. Both of these drawbacks are accounted for in this project.
The aim of this project is to optimize the water photoelectrolysis performance of the photoelectrolysis-photovoltaic tandem-cell device by tailoring the microstructure of the thin film hematite photoanods, and up scaling from the laboratory scale to a prototype device. Fabrication of an efficient water-splitting cell is challenging as it consists of several thin film layers. Each of these layers impacts on the performance of the water-splitting tandem-cell.
Up scaling from the lab scale to the prototype scale (10x10cm2) will be carried out in cooperation with PVComB in Germany. This poses entirely different challenges, creating the need for an adapted fabrication sequence and deposition conditions that ensure the adhesion of the ceramic and metal thin film layers. At the end of this project, I personally will have gained expertise in advanced microstructural analysis technique and also in the leadership role, which will enable me to take the next step in my carrier. And, we will have built a fully functional, fabrication-ready device for hydrogen production directly from solar energy. A great leap forward into a society based on renewable resources.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy solar energy
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology materials engineering coating and films
- engineering and technology environmental engineering energy and fuels renewable energy hydrogen energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.