Objectif In the last few years our traditional interpretative paradigm of the internal dynamics of globular star clusters (GCs) has been revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The existence of multiple stellar populations is now regarded as a ubiquitous phenomenon, while for decades GCs have been viewed as the epitome of a “simple stellar population”. Empirical scaling relations between super massive black holes masses and the velocity dispersion of their host galaxy encourage to consider GCs as host systems of intermediate mass black holes (IMBHs). Finally, little attention has been traditionally paid to the role played by angular momentum in the dynamical evolution of these systems, yet an increasing number of young and old star clusters are now being observed to have evidence of rotation. The astrometric mission Gaia, by allowing the acquisition of the proper motion of thousands of stars in Galactic GCs with exquisite detail, will soon unlock the full phase space of these stellar systems. Such a tremendous observational progress, coupled with recent improvements on the side of numerical simulations, calls for a renewed effort on dynamical modelling. The proposed research program is therefore exceptionally timely and, by means of a unique combination of analytical models, numerical simulations, and the exploitation of state-of-the-art observational data, aims at forming a more realistic dynamical paradigm for this class of stellar systems by providing answers to the following key questions: (1) Are there specific signatures in phase space characterizing the dynamical evolution of multiple stellar populations in GCs? (2) What is the role of the angular momentum in the early and long-term dynamical evolution of star clusters? (3) Is there a dynamical connection between internal rotation and the presence of IMBHs in GCs? Champ scientifique sciences naturellessciences physiquesastronomieastronomie d’observationastronomie optiquelettreshistoire et archéologiehistoiresciences naturellessciences physiquesastronomieastrophysiquetrou noirsciences naturellessciences physiquesastronomieastrophysiquematière noiresciences naturellessciences physiquesastronomieastronomie stellaire Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Thème(s) MSCA-IF-2014-EF - Marie Skłodowska-Curie Individual Fellowships (IF-EF) Appel à propositions H2020-MSCA-IF-2014 Voir d’autres projets de cet appel Régime de financement MSCA-IF-EF-RI - RI – Reintegration panel Coordinateur THE UNIVERSITY OF EDINBURGH Contribution nette de l'UE € 183 454,80 Adresse Old college, south bridge EH8 9YL Edinburgh Royaume-Uni Voir sur la carte Région Scotland Eastern Scotland Edinburgh Type d’activité Higher or Secondary Education Establishments Liens Contacter l’organisation Opens in new window Site web Opens in new window Participation aux programmes de R&I de l'UE Opens in new window Réseau de collaboration HORIZON Opens in new window Autres sources de financement € 0,00