Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flexible Complementary Hybrid Integrated Circuits

Objective

The research and development in the field of flexible electronics in recent years has shown that this technology could be a promising key enabler for future consumer applications due to several advantageous characteristics that are absent from any incumbent technology. These include; unique form factor that allows realisation of unconventional electronics such as bendable displays, as well as the inexpensive/high throughput processing that enables realisation of large-area devices such as sensor systems and/or low-cost disposable electronics e.g. medical diagnostics, identification systems. However, the realization of high-performance integrated circuits on flexible substrates for a low-cost/high-volume market still remains very challenging, primarily due to material and process related limitations. The proposed work program follows a unique approach in order to overcome these limitations through the use of solution-processable organic and inorganic semiconductors in combination with optical sintering methods for rapid material processing. The latter will allow the fabrication of hybrid complementary integrated circuits with performance characteristics beyond the current state of the art on arbitrary substrate materials including flexible temperature-sensitive substrates (e.g. plastic) within a fraction of time compared to conventionally used curing methods (e.g. thermal annealing). This multidisciplinary research work opens new insight into hybrid low-temperature additive transistor technologies and promises very valuable original results merging the broad understanding of the novel organic transistor technologies with novel solution-processable inorganic semiconductors in a complementary hybrid transistor integration process which will be beneficial for the further development of low-cost and large-area electronic systems of the future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 454,80
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 183 454,80
My booklet 0 0