Objective
Plants synthesize a wide range of secondary metabolites, among them, terpenes. These molecules are notably produced in trichomes which are specialized structures present on the surface of aerial organs. Although the terpene biosynthetic pathways have been well deciphered, their transport across membranes remains poorly understood. This is for instance the case for sesquiterpenes such as artemisinin, an extremely potent anti-malaria drug. Despite the immense benefits of these compounds for plant defenses as well as for human health, no sesquiterpene transporters have yet been identified.
It was recently shown that Pleiotropic Drug Resistance (PDR) transporters, which belong to the large ATP-Binding Cassette family, are involved in diterpene transport in Nicotiana tabacum trichomes. Thus, other PDR transporters could transport other types of terpenes such as sesquiterpenes.
Recently, two PDR transporters of Artemisia annua, namely AaPDR1 and AaPDR2, have been shown to be specifically expressed in glandular and T-shaped trichomes, respectively. Interestingly, glandular trichomes are known to produce artemisinin while T-shaped trichomes have been shown to produce ß-caryophyllene. Thus, we can hypothesize that AaPDR1 and AaPDR2 transport dihydroartemisinic acid, the artemisinin precursor, and ß-caryophyllene, respectively.
In order to examine this hypothesis, this project aims to express these transporters in N. tabacum BY2 cells and characterize their activity using toxicity and transport assays in whole cells as well as direct transport in plasma membrane vesicles. In case our hypothesis concerning the substrates is incorrect, we will rely on a transportomics approach, which consists of running transport assays using metabolites extracted from isolated trichomes as putative substrates. In parallel, as a side project, isolated glandular and T-shaped trichomes will be submitted to quantitative proteomic comparison in order to identify their respective metabolisms.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences biochemistry biomolecules lipids
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences analytical chemistry mass spectrometry
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1348 LOUVAIN LA NEUVE
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.