Objective
Adjoint based design optimization techniques are widely recognized as having a large potential to revolutionize the design process of modern gasturbines. By applying such techniques, the optimization of the entire gasturbine system with million degrees of freedom is within reach of the current available computational power. Such simulations include inherently all interactions between the different components avoiding sub-optimal designs.
However, today’s reality is far from this prospect. Current adjoint design optimization techniques only consider aerodynamic performance, preventing the optimization of complete systems, as they are by their very nature multidisciplinary. This project will develop an adjoint optimization methodology that goes beyond only aerodynamic considerations and includes other disciplines such as structural mechanics and vibration dynamics concurrently for the first time, such that in the longer term optimization of complete systems will be achievable.
The key to achieving a true multidisciplinary adjoint design optimization is to work with a master CAD geometry that is shared between all the different disciplines. This differs significantly from the current practice in adjoint techniques, which mainly considers parameterisations that are suitable for only aerodynamic optimizations. The involvement of a master CAD geometry requires the differentiation of a CAD system, until now this has not been performed as CAD systems are invariably proprietary and as such not accessible. In addition, the extension of the methodology to multiple disciplines requires for a highly skilled researcher with a background in aerodynamics as well as structural mechanics.
The fellow of this proposal is a research leader at the Von Karman Institute, which has gained significant experience in the area of multidisciplinary design optimization of turbomachinery over the past 9 years and is the developer of a gradient free optimization system which includes a dedicated
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering automotive engineering
- natural sciences mathematics pure mathematics geometry
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aeronautical engineering
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
E1 4NS LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.