Objective Electroencephalography (EEG) is the non-invasive recording of electrical brain activity, and is an indispensable diagnostic and research tool. A significant advantage of EEG compared to other brain imaging modalities is its high temporal resolution. The downside of EEG is, however, its poor spatial resolution, which is one of the reasons for its gradual replacement by costlier alternatives. It results mainly from the sharp discontinuity in the electric conductivity of the skull bones acting as a strong low-pass filter and limiting the amount meaningful information that can be extracted from EEG signals. We propose a novel concept of EEG measurement hardware which, in combination with signal processing techniques, will increase the spatial resolution of EEG by as much as an order of magnitude. Our idea is based on the observation that by connecting a dynamic network of controllable impedances between pairs of measurement electrodes, one can alter the shape of the spatial filter constituted by the skull. Since EEG is a relatively narrow-band signal (about 100Hz, limited by the time constants of basics units of neural activity), we expect to be able to measure tens or hundreds of different configurations of the network, either directly or by using a compressed sampling scheme, without compromising the temporal resolution. This will introduce many independent equations to the EEG inverse problem and improve source estimation, having critical impact on the diagnostic capabilities of EEG as well as on its use in emerging applications such as neuro-feedback and brain-computer interface (BCI). Fields of science engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processingnatural sciencesphysical sciencesopticsmicroscopysuper resolution microscopy Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-PoC-2014 - ERC Proof of Concept Grant Call for proposal ERC-2014-PoC See other projects for this call Funding Scheme ERC-POC - Proof of Concept Grant Coordinator TEL AVIV UNIVERSITY Net EU contribution € 150 000,00 Address Ramat aviv 69978 Tel aviv Israel See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all TEL AVIV UNIVERSITY Israel Net EU contribution € 150 000,00 Address Ramat aviv 69978 Tel aviv See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00