Description du projet
Ondes de choc de la dynamique des fluides pour des processus précis à l’échelle nanométrique
La dynamique des fluides est un domaine scientifique essentiel dont les caractéristiques uniques offrent des avantages considérables à différentes technologies. Les ondes de choc sont notamment très prometteuses en raison de leur capacité à générer une quantité importante d’énergie et de force. Elles sont utiles pour les tâches nécessitant une précision chirurgicale, telles que l’administration de médicaments in situ et la lithotritie. Financé par le Conseil européen de la recherche, le projet NANOSHOCK entend étudier de manière approfondie les processus d’ondes de choc et mener des expériences précises afin d’améliorer notre compréhension et notre expertise dans leur utilisation. L’objectif ultime consiste à accroître la précision et l’efficacité tout en limitant les effets secondaires potentiels.
Objectif
Fluid dynamics are fundamental to a wide spectrum of natural phenomena and technological applications. Among the most intriguing fluid dynamics events are shockwaves, discontinuities in the macroscopic fluid state that can lead to extreme temperatures, pressures and concentrations of energy.The violence and yet the spatial localization of shockwaves presents us with a unique potential for in situ control of fluid processes with surgical precision. Applications range from kidney-stone lithotripsy and drug delivery to advanced aircraft design. How can this potential be leveraged/harnessed? What mechanisms and inherent properties allow for formation and control of shocks in complex environments such as living organisms? How can shocks be generated in situ and targeted for drug delivery with high precision while minimizing side effects? What is the potential of reactive/fluidic-process steering by shock-interaction manufacturing?
Our objective is to answer these questions by state of the art computational methods, supported by benchmark quality experiments. Computations will be based on advanced multi-resolution methods for multi-physics problems with physically consistent treatment of sub-resolution scales. Uncertainty quantification will be employed for deriving robust flow and shock-dynamic field designs. Paradigms and efficient computational tools will be delivered to the scientific and engineering community. Our group has strong foundations in complex-fluid physics and computational methods and a strong record of successfully integrating research and technical applications. Our goal is to provide un-precedented insight into shock generation and dynamics in complex environments and to unravel the path to technical solutions. Leveraging the enormous potential of manufactured shocks in situ gives access to breakthrough innovations and high-impact technologies, ranging from shock-driven nanoparticle reactors to non-invasive shock-mediated low-impact cancer therapies.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamics
- engineering and technologynanotechnologynano-materials
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- natural sciencesmathematicsapplied mathematicsnumerical analysis
- natural sciencesphysical sciencesopticslaser physics
Programme(s)
Thème(s)
Régime de financement
ERC-ADG - Advanced GrantInstitution d’accueil
80333 Muenchen
Allemagne