Skip to main content

Interacting polaritons in two-dimensional electron systems

Objective

Reversible coupling of excitons and photons in a microcavity leads to the formation of mixed light-matter quasiparticles, called cavity-polaritons. Weakly interacting polaritons constitute a rich system for studying nonequilibrium condensation and superfluidity. While exciton-polaritons have been studied mostly in intrinsic semiconductors with no free electrons, two-dimensional modulation-doped semiconductors with strong interactions between electrons have played a central role in unravelling many-body physics using transport. In this project, we combine these two fields of research and explore the complex interplay between cavity-polaritons and strongly correlated states of two dimensional electrons embedded inside microcavities. Our principal objective is the realization of polariton mediated superconductivity of electrons in gallium arsenide. Besides demonstrating a new mechanism for Cooper-pair formation, such an observation could revolutionize the search for systems that exhibit topological order. In a reciprocal approach, we will exploit the many-body nature of optical excitations in a two-dimensional electron gas to enhance polariton-polariton interactions. This will allow us to reach the polariton blockade regime, paving the way for realization of nonequilibrium strongly interacting polaritons. In parallel, we will explore cavity-magneto-polariton excitations out of fractional quantum Hall ground states: the objective in this part is to use the strong filling factor dependence of polariton splitting to realize nonlinear optical devices which derive their photon-photon interaction from light-absorption induced transition between compressible and incompressible ground states. Concurrently, we will study charged-exciton-polaritons in monolayer transition metal dichalcogenides positioned inside a microcavity, where a large polariton Berry-curvature allows for the observation of valley Hall effect and could be used to realize topological polaritons.

Call for proposal

ERC-2014-ADG
See other projects for this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Activity type
Higher or Secondary Education Establishments
EU contribution
€ 2 482 250

Beneficiaries (1)

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Switzerland
EU contribution
€ 2 482 250
Address
Raemistrasse 101
8092 Zuerich

See on map

Activity type
Higher or Secondary Education Establishments