Description du projet
Comprendre les interactions entre polaritons dans les systèmes électroniques bidimensionnels
Financé par le Conseil européen de la recherche, le projet POLTDES étudiera le couplage d’électrons itinérants avec des polaritons de cavité, quasiparticules fascinantes qui constituent un terrain de jeu riche pour l’étude de la condensation hors équilibre et de la superfluidité. Les chercheurs exploreront l’interaction complexe entre les polaritons de cavité et les états fortement corrélés dans un gaz d’électrons bidimensionnel. Ils chercheront à obtenir une supraconductivité médiée par les polaritons et étudieront les signatures polaritoniques d’états électroniques présentant un ordre topologique. En exploitant le couplage électron-polariton, les chercheurs renforceront les interactions polariton-polariton et s’aventureront dans le régime de blocage de ces quasiparticules, qui empêche deux polaritons d’occuper le même état. Cette avancée devrait permettre de mieux comprendre les polaritons à interaction forte hors équilibre.
Objectif
Reversible coupling of excitons and photons in a microcavity leads to the formation of mixed light-matter quasiparticles, called cavity-polaritons. Weakly interacting polaritons constitute a rich system for studying nonequilibrium condensation and superfluidity. While exciton-polaritons have been studied mostly in intrinsic semiconductors with no free electrons, two-dimensional modulation-doped semiconductors with strong interactions between electrons have played a central role in unravelling many-body physics using transport. In this project, we combine these two fields of research and explore the complex interplay between cavity-polaritons and strongly correlated states of two dimensional electrons embedded inside microcavities. Our principal objective is the realization of polariton mediated superconductivity of electrons in gallium arsenide. Besides demonstrating a new mechanism for Cooper-pair formation, such an observation could revolutionize the search for systems that exhibit topological order. In a reciprocal approach, we will exploit the many-body nature of optical excitations in a two-dimensional electron gas to enhance polariton-polariton interactions. This will allow us to reach the polariton blockade regime, paving the way for realization of nonequilibrium strongly interacting polaritons. In parallel, we will explore cavity-magneto-polariton excitations out of fractional quantum Hall ground states: the objective in this part is to use the strong filling factor dependence of polariton splitting to realize nonlinear optical devices which derive their photon-photon interaction from light-absorption induced transition between compressible and incompressible ground states. Concurrently, we will study charged-exciton-polaritons in monolayer transition metal dichalcogenides positioned inside a microcavity, where a large polariton Berry-curvature allows for the observation of valley Hall effect and could be used to realize topological polaritons.
Champ scientifique
- natural sciencesphysical scienceselectromagnetism and electronicselectromagnetism
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- natural sciencesphysical sciencesopticsspectroscopyabsorption spectroscopy
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programme(s)
Thème(s)
Régime de financement
ERC-ADG - Advanced GrantInstitution d’accueil
8092 Zuerich
Suisse