Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Decoding, Mapping and Designing the Structural Complexity of Hydrogen-Bond Networks: from Water to Proteins to Polymers

CORDIS proporciona enlaces a los documentos públicos y las publicaciones de los proyectos de los programas marco HORIZONTE.

Los enlaces a los documentos y las publicaciones de los proyectos del Séptimo Programa Marco, así como los enlaces a algunos tipos de resultados específicos, como conjuntos de datos y «software», se obtienen dinámicamente de OpenAIRE .

Publicaciones

Structure-property maps with Kernel principal covariates regression (se abrirá en una nueva ventana)

Autores: Benjamin A Helfrecht, Rose K Cersonsky, Guillaume Fraux, Michele Ceriotti
Publicado en: Machine Learning: Science and Technology, Edición 1/4, 2020, Página(s) 045021, ISSN 2632-2153
Editor: IOP
DOI: 10.1088/2632-2153/aba9ef

Identifying and Tracking Defects in Dynamic Supramolecular Polymers (se abrirá en una nueva ventana)

Autores: Piero Gasparotto, Davide Bochicchio, Michele Ceriotti, Giovanni M. Pavan
Publicado en: The Journal of Physical Chemistry B, Edición 124/3, 2019, Página(s) 589-599, ISSN 1520-6106
Editor: American Chemical Society
DOI: 10.1021/acs.jpcb.9b11015

Learning the electronic density of states in condensed matter (se abrirá en una nueva ventana)

Autores: Chiheb Ben Mahmoud, Andrea Anelli, Gábor Csányi, Michele Ceriotti
Publicado en: Physical Review B, Edición 102/23, 2020, ISSN 2469-9950
Editor: Physic Rev
DOI: 10.1103/physrevb.102.235130

Large-Scale Computational Screening of Molecular Organic Semiconductors Using Crystal Structure Prediction (se abrirá en una nueva ventana)

Autores: Jack Yang, Sandip De, Josh E. Campbell, Sean Li, Michele Ceriotti, Graeme M. Day
Publicado en: Chemistry of Materials, Edición 30/13, 2018, Página(s) 4361-4371, ISSN 0897-4756
Editor: American Chemical Society
DOI: 10.1021/acs.chemmater.8b01621

Multi-scale approach for the prediction of atomic scale properties (se abrirá en una nueva ventana)

Autores: Andrea Grisafi, Jigyasa Nigam, Michele Ceriotti
Publicado en: Chemical Science, Edición 12/6, 2021, Página(s) 2078-2090, ISSN 2041-6520
Editor: Royal Society of Chemistry
DOI: 10.1039/d0sc04934d

Iterative Unbiasing of Quasi-Equilibrium Sampling (se abrirá en una nueva ventana)

Autores: F. Giberti, B. Cheng, G. A. Tribello, M. Ceriotti
Publicado en: Journal of Chemical Theory and Computation, Edición 16/1, 2019, Página(s) 100-107, ISSN 1549-9618
Editor: American Chemical Society
DOI: 10.1021/acs.jctc.9b00907

Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles (se abrirá en una nueva ventana)

Autores: Max Veit, David M. Wilkins, Yang Yang, Robert A. DiStasio, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 153/2, 2020, Página(s) 024113, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/5.0009106

Machine learning unifies the modeling of materials and molecules (se abrirá en una nueva ventana)

Autores: Albert P. Bartók, Sandip De, Carl Poelking, Noam Bernstein, James R. Kermode, Gábor Csányi, Michele Ceriotti
Publicado en: Science Advances, Edición 3/12, 2017, Página(s) e1701816, ISSN 2375-2548
Editor: AAAS
DOI: 10.1126/sciadv.1701816

Machine Learning for the Structure-Energy-Property Landscapes of Molecular Crystals (se abrirá en una nueva ventana)

Autores: Felix Musil, Sandip De, Jack Yang, Josh E. Campbell, Graeme Matthew Day, Michele Ceriotti
Publicado en: Chemical Science, Edición 9, 2017, Página(s) 1289, ISSN 2041-6520
Editor: Royal Society of Chemistry
DOI: 10.1039/C7SC04665K

Recognizing Local and Global Structural Motifs at the Atomic Scale (se abrirá en una nueva ventana)

Autores: Piero Gasparotto, Robert Horst Meißner, Michele Ceriotti
Publicado en: Journal of Chemical Theory and Computation, 2018, ISSN 1549-9618
Editor: American Chemical Society
DOI: 10.1021/acs.jctc.7b00993

Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions (se abrirá en una nueva ventana)

Autores: Thuong T. Nguyen, Eszter Székely, Giulio Imbalzano, Jörg Behler, Gábor Csányi, Michele Ceriotti, Andreas W. Götz, Francesco Paesani
Publicado en: The Journal of Chemical Physics, Edición 148/24, 2018, Página(s) 241725, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5024577

Generalized convex hull construction for materials discovery (se abrirá en una nueva ventana)

Autores: Andrea Anelli, Edgar A. Engel, Chris J. Pickard, Michele Ceriotti
Publicado en: Physical Review Materials, Edición 2/10, 2018, ISSN 2475-9953
Editor: American Physical Society
DOI: 10.1103/PhysRevMaterials.2.103804

Mapping uncharted territory in ice from zeolite networks to ice structures (se abrirá en una nueva ventana)

Autores: Edgar A. Engel, Andrea Anelli, Michele Ceriotti, Chris J. Pickard, Richard J. Needs
Publicado en: Nature Communications, Edición 9/1, 2018, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-018-04618-6

Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature (se abrirá en una nueva ventana)

Autores: Yair Litman, Davide Donadio, Michele Ceriotti, Mariana Rossi
Publicado en: The Journal of Chemical Physics, Edición 148/10, 2018, Página(s) 102320, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5002537

Fast-forward Langevin dynamics with momentum flips (se abrirá en una nueva ventana)

Autores: Mahdi Hijazi, David M. Wilkins, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 148/18, 2018, Página(s) 184109, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5029833

Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems (se abrirá en una nueva ventana)

Autores: Andrea Grisafi, David M. Wilkins, Gábor Csányi, Michele Ceriotti
Publicado en: Physical Review Letters, Edición 120/3, 2018, ISSN 0031-9007
Editor: American Physical Society
DOI: 10.1103/PhysRevLett.120.036002

Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials (se abrirá en una nueva ventana)

Autores: Giulio Imbalzano, Andrea Anelli, Daniele Giofré, Sinja Klees, Jörg Behler, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 148/24, 2018, Página(s) 241730, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5024611

Nuclear quantum effects enter the mainstream (se abrirá en una nueva ventana)

Autores: Thomas E. Markland, Michele Ceriotti
Publicado en: Nature Reviews Chemistry, Edición 2/3, 2018, Página(s) 0109, ISSN 2397-3358
Editor: Springer NAture
DOI: 10.1038/s41570-017-0109

Chemical shifts in molecular solids by machine learning (se abrirá en una nueva ventana)

Autores: Federico M. Paruzzo, Albert Hofstetter, Félix Musil, Sandip De, Michele Ceriotti, Lyndon Emsley
Publicado en: Nature Communications, Edición 9/1, 2018, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/s41467-018-06972-x

Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics (se abrirá en una nueva ventana)

Autores: Bingqing Cheng, Christoph Dellago, Michele Ceriotti
Publicado en: Physical Chemistry Chemical Physics, Edición 20/45, 2018, Página(s) 28732-28740, ISSN 1463-9076
Editor: Royal Society of Chemistry
DOI: 10.1039/C8CP04561E

Feature optimization for atomistic machine learning yields a data-driven construction of the periodic table of the elements (se abrirá en una nueva ventana)

Autores: Michael J. Willatt, Félix Musil, Michele Ceriotti
Publicado en: Physical Chemistry Chemical Physics, Edición 20/47, 2018, Página(s) 29661-29668, ISSN 1463-9076
Editor: Royal Society of Chemistry
DOI: 10.1039/C8CP05921G

Transferable Machine-Learning Model of the Electron Density (se abrirá en una nueva ventana)

Autores: Andrea Grisafi, Alberto Fabrizio, Benjamin Meyer, David M. Wilkins, Clemence Corminboeuf, Michele Ceriotti
Publicado en: ACS Central Science, Edición 5/1, 2019, Página(s) 57-64, ISSN 2374-7943
Editor: ACS
DOI: 10.1021/acscentsci.8b00551

Accurate molecular polarizabilities with coupled cluster theory and machine learning (se abrirá en una nueva ventana)

Autores: David M. Wilkins, Andrea Grisafi, Yang Yang, Ka Un Lao, Robert A. DiStasio, Michele Ceriotti
Publicado en: Proceedings of the National Academy of Sciences, Edición 116/9, 2019, Página(s) 3401-3406, ISSN 0027-8424
Editor: National Academy of Sciences
DOI: 10.1073/pnas.1816132116

Unsupervised machine learning in atomistic simulations, between predictions and understanding (se abrirá en una nueva ventana)

Autores: Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 150/15, 2019, Página(s) 150901, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5091842

i-PI 2.0: A universal force engine for advanced molecular simulations (se abrirá en una nueva ventana)

Autores: Venkat Kapil, Mariana Rossi, Ondrej Marsalek, Riccardo Petraglia, Yair Litman, Thomas Spura, Bingqing Cheng, Alice Cuzzocrea, Robert H. Meißner, David M. Wilkins, Benjamin A. Helfrecht, Przemysław Juda, Sébastien P. Bienvenue, Wei Fang, Jan Kessler, Igor Poltavsky, Steven Vandenbrande, Jelle Wieme, Clemence Corminboeuf, Thomas D. Kühne, David E. Manolopoulos, Thomas E. Markland, Jeremy O. Rich
Publicado en: Computer Physics Communications, Edición 236, 2019, Página(s) 214-223, ISSN 0010-4655
Editor: Elsevier BV
DOI: 10.1016/j.cpc.2018.09.020

Fast and Accurate Uncertainty Estimation in Chemical Machine Learning (se abrirá en una nueva ventana)

Autores: Félix Musil, Michael J. Willatt, Mikhail A. Langovoy, Michele Ceriotti
Publicado en: Journal of Chemical Theory and Computation, Edición 15/2, 2018, Página(s) 906-915, ISSN 1549-9618
Editor: American Chemical Society
DOI: 10.1021/acs.jctc.8b00959

Ab initio thermodynamics of liquid and solid water (se abrirá en una nueva ventana)

Autores: Bingqing Cheng, Edgar A. Engel, Jörg Behler, Christoph Dellago, Michele Ceriotti
Publicado en: Proceedings of the National Academy of Sciences, Edición 116/4, 2019, Página(s) 1110-1115, ISSN 0027-8424
Editor: National Academy of Sciences
DOI: 10.1073/pnas.1815117116

Atom-density representations for machine learning (se abrirá en una nueva ventana)

Autores: Michael J. Willatt, Félix Musil, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 150/15, 2019, Página(s) 154110, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5090481

A new kind of atlas of zeolite building blocks (se abrirá en una nueva ventana)

Autores: Benjamin A. Helfrecht, Rocio Semino, Giovanni Pireddu, Scott M. Auerbach, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 151/15, 2019, Página(s) 154112, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5119751

Assessment of Approximate Methods for Anharmonic Free Energies (se abrirá en una nueva ventana)

Autores: Venkat Kapil, Edgar Engel, Mariana Rossi, Michele Ceriotti
Publicado en: Journal of Chemical Theory and Computation, Edición 15/11, 2019, Página(s) 5845-5857, ISSN 1549-9618
Editor: American Chemical Society
DOI: 10.1021/acs.jctc.9b00596

A Bayesian approach to NMR crystal structure determination (se abrirá en una nueva ventana)

Autores: Edgar A. Engel, Andrea Anelli, Albert Hofstetter, Federico Paruzzo, Lyndon Emsley, Michele Ceriotti
Publicado en: Physical Chemistry Chemical Physics, Edición 21/42, 2019, Página(s) 23385-23400, ISSN 1463-9076
Editor: Royal Society of Chemistry
DOI: 10.1039/c9cp04489b

Quantum mechanical static dipole polarizabilities in the QM7b and AlphaML showcase databases (se abrirá en una nueva ventana)

Autores: Yang Yang, Ka Un Lao, David M. Wilkins, Andrea Grisafi, Michele Ceriotti, Robert A. DiStasio
Publicado en: Scientific Data, Edición 6/1, 2019, ISSN 2052-4463
Editor: Springer
DOI: 10.1038/s41597-019-0157-8

Using Gaussian process regression to simulate the vibrational Raman spectra of molecular crystals (se abrirá en una nueva ventana)

Autores: Nathaniel Raimbault, Andrea Grisafi, Michele Ceriotti, Mariana Rossi
Publicado en: New Journal of Physics, Edición 21/10, 2019, Página(s) 105001, ISSN 1367-2630
Editor: Institute of Physics Publishing
DOI: 10.1088/1367-2630/ab4509

Barely porous organic cages for hydrogen isotope separation (se abrirá en una nueva ventana)

Autores: Ming Liu, Linda Zhang, Marc A. Little, Venkat Kapil, Michele Ceriotti, Siyuan Yang, Lifeng Ding, Daniel L. Holden, Rafael Balderas-Xicohténcatl, Donglin He, Rob Clowes, Samantha Y. Chong, Gisela Schütz, Linjiang Chen, Michael Hirscher, Andrew I. Cooper
Publicado en: Science, Edición 366/6465, 2019, Página(s) 613-620, ISSN 0036-8075
Editor: American Association for the Advancement of Science
DOI: 10.1126/science.aax7427

Atomic Motif Recognition in (Bio)Polymers: Benchmarks From the Protein Data Bank (se abrirá en una nueva ventana)

Autores: Benjamin A. Helfrecht, Piero Gasparotto, Federico Giberti, Michele Ceriotti
Publicado en: Frontiers in Molecular Biosciences, Edición 6, 2019, ISSN 2296-889X
Editor: University College London, United Kingdom
DOI: 10.3389/fmolb.2019.00024

Incorporating long-range physics in atomic-scale machine learning (se abrirá en una nueva ventana)

Autores: Andrea Grisafi, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 151/20, 2019, Página(s) 204105, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5128375

Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces (se abrirá en una nueva ventana)

Autores: Kislon Voïtchovsky, Daniele Giofrè, Juan José Segura, Francesco Stellacci, Michele Ceriotti
Publicado en: Nature Communications, Edición 7, 2016, Página(s) 13064, ISSN 2041-1723
Editor: Nature Publishing Group
DOI: 10.1038/ncomms13064

Inexpensive modeling of quantum dynamics using path integral generalized Langevin equation thermostats (se abrirá en una nueva ventana)

Autores: Venkat Kapil, David M. Wilkins, Jinggang Lan, Michele Ceriotti
Publicado en: The Journal of Chemical Physics, Edición 152/12, 2020, Página(s) 124104, ISSN 0021-9606
Editor: American Institute of Physics
DOI: 10.1063/1.5141950

Chemiscope: interactive structure-property explorer for materials and molecules (se abrirá en una nueva ventana)

Autores: Guillaume Fraux, Rose Cersonsky, Michele Ceriotti
Publicado en: Journal of Open Source Software, Edición 5/51, 2020, Página(s) 2117, ISSN 2475-9066
Editor: Independent
DOI: 10.21105/joss.02117

Improving sample and feature selection with principal covariates regression (se abrirá en una nueva ventana)

Autores: Rose K Cersonsky, Benjamin A Helfrecht, Edgar A Engel, Sergei Kliavinek, Michele Ceriotti
Publicado en: Machine Learning: Science and Technology, Edición 2/3, 2021, Página(s) 035038, ISSN 2632-2153
Editor: Machine Learning: Science and Technology
DOI: 10.1088/2632-2153/abfe7c

Global Free-Energy Landscapes as a Smoothly Joined Collection of Local Maps (se abrirá en una nueva ventana)

Autores: F. Giberti, G. A. Tribello, M. Ceriotti
Publicado en: Journal of Chemical Theory and Computation, Edición 17/6, 2021, Página(s) 3292-3308, ISSN 1549-9618
Editor: American Chemical Society
DOI: 10.1021/acs.jctc.0c01177

Atomic-Scale Representation and Statistical Learning of Tensorial Properties (se abrirá en una nueva ventana)

Autores: Andrea Grisafi; David M. Wilkins; Michael J. Willatt; Michele Ceriotti
Publicado en: ACS Symposium Series, Edición 4, 2019
Editor: Machine Learning in Chemistry
DOI: 10.1021/bk-2019-1326.ch001

Buscando datos de OpenAIRE...

Se ha producido un error en la búsqueda de datos de OpenAIRE

No hay resultados disponibles

Mi folleto 0 0