Objective
Fundamental research on respiratory transport phenomena, quantifying momentum and mass transfer in the lung depths, is overwhelmingly focused on adults. Yet, children are not just miniature adults; their distinct lung structures and heterogeneous ventilation patterns set them aside from their parents. In RespMicroFlows, we will break this cycle and unravel the complex microflows characterizing alveolar airflows in the developing pulmonary acini. Our discoveries will foster ground-breaking transport strategies to tackle two urgent clinical needs that burden infants and young children. The first challenge relates to radically enhancing the delivery and deposition of therapeutics using inhalation aerosols; the second involves targeting liquid bolus installations in deep airways for surfactant replacement therapy.
By developing advanced in silico numerical simulations together with microfluidic in vitro platforms mimicking the pulmonary acinar environment, our efforts will not only deliver a gateway to reliably assess the outcomes of inhaling aerosols and predict deposition patterns in young populations, we will furthermore unravel the fundamentals of liquid bolus transport to achieve optimal surfactant delivery strategies in premature neonates. By recreating cellular alveolar environments that capture underlying physiological functions, our advanced acinus-on-chips will deliver both at true scale and in real time the first robust and reliable in vitro screening platforms of exogenous therapeutic materials in the context of inhaled aerosols and surfactant-laden installations. Combining advanced engineering-driven flow visualization solutions with strong foundations in transport phenomena, fluid dynamics and respiratory physiology, RespMicroFlows will pave the way to a new and unprecedented level in our understanding and quantitative mapping of respiratory flow phenomena and act as catalyst for novel targeted pulmonary drug delivery strategies in young children.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- medical and health sciences clinical medicine pneumology asthma
- medical and health sciences medical biotechnology nanomedicine
- medical and health sciences basic medicine physiology
- natural sciences biological sciences biophysics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.