Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Rydberg dressed quantum many-body systems

Objective

The project “Rydberg dressed quantum many-body systems” (RyD-QMB) will experimentally study long-range interacting atomic quantum many-body systems with tailored microscopic interactions. It will explore supersolidity expected for ultracold bosonic systems with soft-core interactions and realize quantum magnets, that are designable almost at will and feature unprecedented coupling strengths. As such, it opens new directions for atomic quantum simulation and paves the way towards the experimental study and the design of frustrated magnets, interacting topological systems and artificial quantum gauge fields, topics, that not only push the limits of quantum simulators for solid state physics, but also reach out into the field of high energy physics.
The unique interaction features RyD-QMB plans to exploit emerge from the combination of ultracold atoms with Rydberg atoms. Using Rydberg dressing long-range interactions will be induced, whose strength, distance dependence and isotropy is controlled. Simultaneously, the gap between the timescales of atomic motion and lifetime of the Rydberg states will be bridged.
Strong optical coupling to the Rydberg state is key for the implementation of useful Rydberg dressing. Therefore, RyD-QMB will use high power single photon coupling in the ultraviolet to induce the interactions. RyD-QMB will explore Rydberg dressing of continuous as well as lattice systems and aims to:

* Demonstrate microscopic interaction design of quantum many-body systems using strong Rydberg dressing of potassium.
* Explore exotic superfluidity in two dimensional long-range interacting systems and, especially, realize soft-core interacting many-body systems that are predicted to show supersolidity.
* Study ground states and non-equilibrium dynamics of strongly interacting quantum magnets with designed long-range spin couplings that are induced by the light field.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 497 374,99
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 497 374,99

Beneficiaries (1)

My booklet 0 0