Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Quantum fluids of photons in optically-induced structures

Objective

A variety of classical optical systems exhibiting rich and complex matter-like behavior have been explored in recent years. Unfortunately in the optical regime, photons – the fundamental constituents of light – do not interact strongly with one another, and therefore cannot be used for studying many-body effects. It is only in the extreme regime of quantum nonlinear optics where effective interactions between photons are made strong. In an atomic gas, strong long-range interactions can be achieved by coupling photons to interacting atoms. First experiments have indicated the formation of a two-photon bound state via this mechanism. The main goal of the proposed research is to develop an optical system based on atomic interactions that realizes quantum many-body physics with optical photons subject to a rich variety of model problems.

The proposed method relies on reconfigurable, optically-induced, three-dimensional, structures, which are fully compatible with the underlying atomic process. These structures enable the spatial compression of photons for enhancing the interactions, wave guiding for one-dimensional confinement in long media, and a rich variety of two-dimensional potentials with tunable interactions, from nearly-free photons to various tight-binding models with a controllable level of disorder. Optically-induced structures also offer advantages to optical quantum information, enabling better gate fidelities due to stronger nonlinearities and multimode coupling for processes such as photon routing.

Our method has the potential to realize quantum gases and fluids of interacting photons. We can manipulate the effective mass and the band structure, control the potential landscape, and tune the scattering length in the system from attractive to repulsive. In particular, we intend to study few-photon bound states, quantum solitons, Luttinger liquids of photons, and Wigner crystallization in one and two dimensions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0