Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Unravelling the Mechanosensitivity of Actin Bundles in Filopodia

Objective

Eukaryotic cells constantly convert signals between biochemical energy and mechanical work to timely accomplish many key functions such as migration, division or development. Filopodia are essential finger-like structures that emerge at the cell front to orient the cell in response to its chemical and mechanical environment. Yet, the molecular interactions that make the filopodia mechanosensitive are not known. To tackle this challenge we propose unique biophysical in vitro and in vivo experiments of increasing complexity. Here we will focus on how the underlying actin filament bundle regulates filopodium growth and retraction cycles at the micrometer and seconds scales. These parallel actin filaments are mainly elongated at their barbed-end by formins and cross-linked by bundling proteins such as fascins.
We aim to:
1) Elucidate how formin and fascin functions are regulated by mechanics at the single filament level. We will investigate how formin partners and competitors present in filopodia affect formin processivity; how fascin affinity for the side of filaments is modified by filament tension and formin presence at the barbed-end.
2) Reconstitute filopodium-like actin bundles in vitro to understand how actin bundle size and fate are regulated down to the molecular scale. Using a unique experimental setup that combines microfluidics and optical tweezers, we will uncover for the first time actin bundles mechanosensitive capabilities, both in tension and compression.
3) Decipher in vivo the mechanics of actin bundles in filopodia, using fascins and formins with integrated fluorescent tension sensors.
This framework spanning from in vitro single filament to in vivo meso-scale actin networks will bring unprecedented insights into the role of actin bundles in filopodia mechanosensitivity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 190,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 190,00

Beneficiaries (1)

My booklet 0 0