Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Novel 2D quantum device concepts enabled by sub-nanometre precision nanofabrication

Objective

IIn today’s electronics, the information storage and processing are performed by independent technologies. The information-processing is based on semiconductor (silicon) devices, while non-volatile data storage relies on ferromagnetic metals. Integrating these tasks on a single chip and within the same material technology would enable disruptively new device concepts opening the way towards ultra-high speed electronic circuits. Due to the unique versatility of its electronic and magnetic properties, graphene has a strong potential as a platform for the implementation of such devices. By engineering their structure at the atomic level, graphene nanostructures of metallic, semiconducting, as well as magnetic properties can be realized. Here we propose that the unmatched precision and full edge orientation control of our STM-based nanofabrication technique enables the reliable implementation of such graphene nanostructures, as well as their complex, functional networks. In particular, we propose to experimentally demonstrate the feasibility of (1) semiconductor graphene nanostructures based on the quantum confinement effect, (2) spin-based devices from graphene nanostructures with magnetic edges, as well as (3) novel operation principles based on the interplay of the electronic and spin-degrees of freedom. We propose to demonstrate the electrical control of magnetism in graphene nanostructures, as well as a novel switching mechanism for graphene field effect transistors induced by the transition between two magnetic edge configurations. Exploiting such novel operation mechanisms in graphene nanostructure engineered at the atomic scale is expected to lay the foundations of disruptively new device concepts combining electronic and spin-based mechanisms that can overcome some of the fundamental limitations of today’s electronics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

HUN-REN ENERGIATUDOMANYI KUTATOKOZPONT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 496 500,00
Address
KONKOLY THEGE MIKLOS UT 29-33
1121 Budapest
Hungary

See on map

Region
Közép-Magyarország Budapest Budapest
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 496 500,00

Beneficiaries (1)

My booklet 0 0