Objetivo
Nowadays, we witness that more and more information is stored and managed in a digital way. Moreover, very often processes are executed and planed by computers. This allows applying computer methods to optimize performance of our actions on an unprecedented scale. This is clearly visible in the case of eCommerce, where the main arena of operation of companies is handled solely using computers. Typically, machine learning tools and algorithms are widely used, e.g. for the prediction of user behavior, user classification, or in recommendation systems. When applying such tools one needs to base his computations on existing historical data. This limits the prediction power of such systems, as we cannot predict the reaction of the users nor of the markets to changes in our strategy. In the case of bidding for Ads in online auctions, we only have full information about the auctions we have won, but in the case of lost auctions we only know that we have lost. Hence, it is almost impossible to predict which auctions we would win using only plain historical data. This problem calls for a novel approach that could extrapolate missing information. Here, we propose the development of such framework together with the programming library that would support such extrapolation. This new framework will incorporate algorithmic game theory into the existing approximation and machine learning algorithms. Game theory gives the right tools to talk about incentives of strategic agents and allows predicting response of market actors to changing conditions. Our idea is to describe these incentives and to build a force feedback loop between market models and algorithmic optimization methods. We will first extract and learn the parameters of the market models from the historical data, only then the extrapolated model will be used as the benchmark for the optimization methods. This novel idea will allow to use optimization tools in the previously intractable parameter range.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias sociales economía y empresa gestión y empresas comercio comercio electrónico
- ciencias naturales matemáticas matemáticas aplicadas teoría de juegos
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-POC - Proof of Concept Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2015-PoC
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
00-927 WARSZAWA
Polonia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.