Objectif
Breast cancer is the most common type of cancer affecting woman in the EU. Multidisciplinary Breast Units (BUs) were introduced in order to deal efficiently with breast cancer cases, setting guideline-based quality procedures and a high standard of care. However, daily practice in the BUs is hampered by the complexity of the disease, the vast amount of patient and disease data available in the digital era, the difficulty in coordination, the pressure exerted by the system and the difficulty in deciding on cases that guidelines do not reflect.
DESIREE aims to alleviate this situation by providing a web-based software ecosystem for the personalized, collaborative and multidisciplinary management of primary breast cancer (PBC) by specialized BUs. Decision support will be provided on the available therapy options by incorporating experience from previous cases and outcomes into an evolving knowledge model, going beyond the limitations of the few existing guideline-based decision support systems (DSS). Patient cases will be represented by a novel digital breast cancer patient (DBCP) data model, incorporating variables relevant for decision and novel sources of information and biomarkers of diagnostic and prognostic value, providing a holistic view of the patient presented to the BU through specialized visual exploratory interfaces. The influence of new variables and biomarkers in current and previous cases will be explored by a set of data mining and visual analytics tools, leveraging large amounts of retrospective data.
Iintuitive web-based tools for multi-modality image analysis and fusion will be developed, providing advanced imaging biomarkers for breast and tumor characterization. Finally, a predictive tool for breast conservative therapy will be incorporated, based on a multi-scale physiological model, allowing to predict the aesthetic outcome of the intervention and the healing process, with important clinical and psychological implications for the patients.
Champ scientifique
- sciences naturellesinformatique et science de l'informationingénierie de la connaissanceontologie
- sciences naturellesinformatique et science de l'informationlogiciellogiciel d’applicationlogiciel système
- sciences naturellesinformatique et science de l'informationscience des donnéesexploration de données
- sciences médicales et de la santémédecine cliniqueoncologiecancer du sein
- ingénierie et technologieingénierie médicaleimagerie diagnostiqueimagerie par résonance magnétique
Programme(s)
Thème(s)
Régime de financement
RIA - Research and Innovation action
Coordinateur
20009 Donostia San Sebastian
Espagne
Voir sur la carte
Participants (11)
85716 Unterschleissheim
Voir sur la carte
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.
75012 Paris
Voir sur la carte
48003 Bilbao
Voir sur la carte
46004 Valencia
Voir sur la carte
20014 Donostia San Sebastian
Voir sur la carte
75654 Paris
Voir sur la carte
30200 Mesolongi
Voir sur la carte
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.
46980 Paterna
Voir sur la carte
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.
Participation terminée
772042022 Houston
BT52 1SA Coleraine
Voir sur la carte
77030 Houston Tx
Voir sur la carte