Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanistic Understanding of Heterogenised Hydrogen Evolution Catalysts Through Vibrational Spectroelectrochemistry

Objective

Hydrogen (H2) will play a central role in the future global energy economy. It is therefore of utmost importance to develop economic routes for the production of H2 to make it more attractive as energy carrier medium in the future. Particularly, Co and Ni based compounds have gained attention for molecular H2 catalysis lately. Co glyoxime and pentapyridine coordinative complexes as well as Ni phosphine compounds are promising candidates exhibiting high catalytic activity in both electro- and light driven H2 catalysis in water. Nevertheless, for technological application the catalysts have to be immobilized on electrode surfaces. The adsorption strongly alters the catalytic reactions, which is still not clearly understood. To investigate the adsorbed catalysts, advanced spectroscopic methods are required that are able to provide sensitive information on the catalytic reaction at a molecular level. The aim of this proposed research is to investigate the heterogeneous catalytic reaction mechanism of Co and Ni mediated catalysis using an innovative combination of potential controlled confocal resonance Raman and ATR FT infrared absorption spectroscopy assisted by electrocatalytic methods and DFT calculations. For this, the three mentioned types of catalysts will be adsorbed on metal oxide surfaces and their catalytic reactions spectroelectrochemically and electrochemically investigated. Special emphasis is led on the role of heterogeneous electron and proton transfer steps on the overall heterogeneous catalytic activity compared to the homogeneous case. Through variation of the electrode material, the modulating material/catalyst interaction is aimed to be investigated in detail. In the outcome, the results will afford a comprehensive picture of the mechanism of metal catalysed HER.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 183 454,80
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 183 454,80
My booklet 0 0