Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

3D-printed magnetic microfluidics for applications in life sciences

Objective

The field of microfluidics is providing answers to several key questions in biology. Specifically, microfluidic single-cell analysis yields important insights into the heterogeneity of cells that is crucial for cancer research, regenerative medicine and drug development. Microfluidics has also emerged as a powerful tool to study single bacteria and to address questions concerning antibiotic persistence and the role of the microbiome in protecting against modern plagues such as cancer, autoimmune diseases and obesity. Despite its great potential, microfluidic technologies have not been widely adopted in mainstream biomedical research since they require a great deal of external equipment, which is often difficult to operate by untrained personnel.
The aim of this proposal is to simplify fluid handling and single-cell studies by developing a microfluidic device that includes magnetic microvalves. These microvalves can be wirelessly actuated to generate compartments and isolate single cells. The magnetic microvalves will be integrated by means of a very recently available lithographic tool based on two-photon polymerization (2PP) with sub-diffraction limit resolution, which enables the fabrication of polymer-based 3D micro- and nano-architectures. The microMAGNETOFLUIDICS project is strongly interdisciplinary in nature where physics, materials science, and biology are strongly intertwined. The innovative character of this proposal is unprecedented since no previous studies have been reported on 3D-printed magnetic microvalves operating within a microfluidic channel. The topic of the project is timely because it promotes the use of microfluidics among biologists and bacteriologists for decrypting cellular mechanisms at a single-cell level.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution
€ 187 419,60
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 187 419,60