The STILLING project has improved our knowledge on the wind speed changes over spatio-temporal scales which have not been explored before. The work carried out by scientists from the University of Gothenburg and the partner organization at the Royal Netherlands Meteorological Institute consisted on a innovative strategy towards: (i) compilation of historical wind records from different climate databases and old-weather books; (ii) creation of new statistical algorithms/software to quality control and homogenize raw wind records; and (iii) analysis of wind speed variability over time-windows (prior to the 1960s) and regions never assessed in the scientific literature. Firstly, the project was based on the compilation of wind speed series from various data sources and throughout National Weather Services (NWS) around the world. In collaboration with staff of NWS, we also developed templates to rescue and digitize wind records from old weather books. Secondly, we designed a pioneering approach to homogenize wind records, and implemented it in the Climatol software, representing a significant outcome of this MSCA action. Thirdly, and finally, this work produced the first homogenized wind dataset with records prior to the 1960s (~3,500 stations; some of them covering a centennial time-scale), which has helped to assess and attribute wind speed variability for different regions across the world. As planned, project results have already been disseminated in peer-reviewed international scientific journals (open access) such as Climate Dynamics, International Journal of Climatology, Atmospheric Research, and the Bulletin of the American Meteorological Society, and presented in key conferences as those organized by the European Meteorological Society or the European Geophysical Union. Press releases about the STILLING project in e.g. the Horizon Magazine, Cosmos Magazine or De Standaard newspaper helped to disseminate our research beyond the academia. The homogenized databases and results achieved during the STILLING project are expected to extend wind studies to more complete analyses, which will undoubtedly help to unravel the drivers behind the “stilling” phenomenon in a changing climate.