Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Mechanical Behavior of Microscale Metallic Wires under Torsional and Tensile Loadings at Elevated Temperatures

Objective

The size effects (smaller is stronger) and Bauschinger effects (plastic recovery) at room temperature have been extensively documented experimentally at the micro/nano-scale. However, the underlying deformation mechanisms remain ambiguous, particularly in the presence of strain gradients. In this project, we intend to develop an integrated micro-torsion and micro-tension technique with a heating and temperature-control element for investigating the mechanical behavior of micro-scale metallic wires/tubes at elevated temperatures. We study all three size effects, due to the grain size, due to nonuniform deformation, and due to the wire diameter, and their coupling effects, using samples with different diameters (or wall thickness) and controlled grain sizes. The Fellow has reported the first observation of anomalous plasticity in the cyclic torsion of micro-scale metallic wires at room temperature. However, there have been no reports on the phenomenon in the cyclic torsion of small volumes at elevated temperatures. In this proposal, we plan to perform the (cyclic) torsion tests on micron-scale metallic wires and tubes which are heated in situ by passing an electrical current, and then to analyze the relation between plastic recovery and temperature. A long term goal is to exploit the size effect in novel high-strength, lightweight materials through “length-scale engineering”. The main objectives are: • To integrate the different micro-torsion/tension experimental methods, and so that it can be used at high temperatures. • To perform (cyclic) torsion and tension tests on thin metallic wires/tubes at elevated temperature. • To integrate the complementary theoretical methods, used to understand the corresponding physical mechanisms for the observed phenomena. • To test existing theories for micro-scale plasticity by using the homemade samples, e.g. thin wires/tubes prepared with different grain sizes and diameters.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

QUEEN MARY UNIVERSITY OF LONDON
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 146 591,10
Address
327 MILE END ROAD
E1 4NS LONDON
United Kingdom

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 146 591,10
My booklet 0 0