Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Chromatin targeting and remodelling by bacterial effectors in plant immunity

Objective

In nature, plants are challenged by disease-causing pathogens such as viruses, bacteria and fungi. Understanding mechanisms of plant disease and disease resistance is of fundamental importance to sustainable agriculture and human health. Unlike mammals, plants lack a circulating immune system. Plants instead rely on the innate immune capacity of each cell and systemic signals that disseminate from infection sites. Successful pathogens use effectors to suppress plant immunity and cause disease. Plants have evolved disease resistance genes encoding immune receptors that perceive specific pathogen effectors to mount effector-triggered immunity. In Arabidopsis, a heteromeric pair of intracellular immune receptors forms a functional recognition complex which senses virulence activities of two structurally unrelated bacterial effectors at the nuclear chromatin. Results suggest that effector targeting of histone modifications and chromatin remodelling interferes with host basal immunity and that this is transduced by the receptor pair to activation of defence pathways. The underlying molecular mechanisms remain unclear. We have found that the two bacterial effectors interact with an overlapping set of chromatin-associated proteins and with certain immune receptor domains. We hypothesize that the effectors converge on the same chromatin machinery for promoting disease and that their actions are intercepted by the immune receptor system which is physically connected to basal immunity signalling components. By using the effectors as molecular probes, this proposal aims to elucidate how the chromatin environment is modulated during infection and how effector perturbations are converted to effective immunity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 159 460,80
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 159 460,80
My booklet 0 0