Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Probabilistic modelling of electronic health records

Objective

The growing worldwide adoption of Electronic Health Records (EHR) enables new research opportunities to analyse massive amounts of medical information, motivated by the promise of improving health systems while providing significant budget savings. Biomedical research increasingly uses machine learning methods as a data-driven approach to learn complex comorbidity patterns of diseases, study drug interactions, and form predictions. The analysis of EHRs may not only lead to knowledge discovery, but it also facilitates personalised medical treatment and early diagnosis of the diseases through the design of clinical support systems.

However, current approaches for the analysis of EHRs are still in their early stages. The two main technical challenges that need to be addressed are integration of heterogeneous data and scalability to massive datasets. Most of the existing methods are tailored to homogeneous data and, therefore, to a single source of information, and hence they cannot handle EHR datasets. Scalability also represents a difficulty for most of the current machine learning techniques, which are limited to the analysis to moderate-sized datasets.

In this project, we will develop novel tools for the analysis of heterogeneous EHR data. Our approach will be based on probabilistic modelling techniques, since they are an effective approach for understanding real-world data in many areas of science. We will make use of Bayesian nonparametric modelling techniques, coupled with stochastic variational inference to allow for scalable inference. Probabilistic models, including BNPs, are amenable to both descriptive and predictive analysis at the same time. We will collaborate with the Department of Biomedical Informatics, who will provide their knowledge about the problem, allowing for good model formulations and results analysis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-GF - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 269 857,80
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 269 857,80

Partners (1)

My booklet 0 0