Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

RATE: Respiratory Acoustics To estimate Energy in wild cetaceans

Objective

Cetaceans are apex predators with significant top-down roles in the marine ecosystem. The impact of these roles must be quantified by measuring energetics in the wild, which has proven difficult in cryptic, highly mobile animals. Current techniques to estimate energy use in free-swimming dolphins overestimate measured values by >200% or integrate energy expenditure over time scales too long to detect responses to specific events or conditions. Through RATE, I will make the first reliable estimates of energy expenditure in managed and free-swimming cetaceans by applying novel techniques from human medicine to extract information from respiratory sounds. RATE will (I) calibrate respiratory flow rates from breath sounds recorded in bottlenose dolphins, (II) apply this calibration to tag deployments on free-swimming, wild dolphins to derive reliable estimates of airflow and energy use, and (III) assess changes in respiratory condition in response to specific events or behaviours. RATE’s objectives require simultaneous respiratory measurements and acoustic recordings of each breath: a custom-built pneumotach placed over the blowhole of bottlenose dolphins will record respiratory flow rates and gases, while state-of-the-art acoustic tags (DTAGs) placed near the animal’s blowhole with suction cups concurrently record the sound of exhalation and inhalation. In accomplishing RATE’s Objectives, I will provide a quantitative and mechanistic framework to define the cost of existence of cetaceans in their natural habitats – a major breakthrough in marine mammal physiology that is directly relevant to the European Commission (EC)’s Marine Strategy Framework Directive. The novel methods I will develop for RATE will overcome existing limitations of measuring field metabolic rates in free-swimming animals, and will increase the resolution of field metabolic rate from days to seconds to revolutionize how we measure energy turnover of marine mammals in the wild.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2015

See all projects funded under this call

Coordinator

AARHUS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 200 194,80
Address
NORDRE RINGGADE 1
8000 Aarhus C
Denmark

See on map

Region
Danmark Midtjylland Østjylland
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 200 194,80
My booklet 0 0