Periodic Reporting for period 1 - PredAMEG (Identifying Oscillatory Signatures of Predictive Coding in Hierarchical Auditory Networks with MEG)
Período documentado: 2017-01-01 hasta 2018-12-31
The PredAMEG project aimed to address these questions through the investigation of spectral signatures underlying sensory predictions and prediction-error generation across the auditory hierarchy in healthy volunteers and in schizophrenia patients. Specifically, we aimed to disentangle the neural mechanisms involved in inter-areal brain communication during normal brain functioning and assess whether bottom-up or top-down auditory predictive signaling is disrupted in schizophrenia.
Results obtained so far in healthy participants indicate that: 1) auditory networks use a multiplexing system for communication across brain regions. That is, bottom-up signaling from auditory to high-order prefrontal regions is conveyed by neural oscillations in the theta (~ 4-8 Hz) and gamma (> 40 Hz) bands. Top-down communication, on the other hand, is preferentially driven by alpha/beta oscillations (9-40 Hz). 2) Such an asymmetric communication pattern is tightly linked with the signaling of predictive signals. Prediction error signals, associated with the processing of unexpected events, elicit a dominant bottom-up communication between sensory to prefrontal regions in theta- and gamma-bands. Conversely, more repeated or predictable sounds sequences elicit stronger the top-down alpha/beta signaling from prefrontal to auditory regions. The outcomes of phase 1 have been disseminated in one international conference and several national conferences and workshops in the United Kingdom. A manuscript with the outcomes of phase 1 is under preparation and foreseeably published in 2019.
Phase 2 of the PredAMEG project is currently ongoing. Phase 2 involves the recording of a similar sample (n = 25) of schizophrenia patients and healthy controls. Identical analyses as in phase 1 will be carried out, in addition to the statistical assessment of group differences. Given the advancement made during phase 1, the outcomes from phase 2 are expected to be published during 2019.
"
Furthermore, results from the PredAMEG project advance in the understanding of the mechanisms underlying novelty and deviance detection, which have relevant implications in the research of ageing, language perception and clinical conditions such as psychosis, coma and vegetative state or dyslexia.
Finally, at completion of phase 2, we expect to observe a distinct pattern of neural communication in schizophrenia patients characterized by impaired bottom-up and top-down connectivity, and decreased predictability effects, suggesting a disturbance in predictive coding. Theses findings will provide critical insights into the pathophysiology of schizophrenia and will be of relevance to translational research by clarifying the oscillatory mechanisms involved in aberrant auditory processing.