Objective
Many aspects of the animal flight still remain unexplored, despite the enormous possibilities they offer to improve the current aerospace technology. One such aspect that received least attention of the scientists is the following: the wing surfaces of the flying animals are coated with hairs, feathers and other filamentous structures. These self-adaptive hairy layers strongly influence the flow field characteristics, and it has been reported that such coatings may be used to control the laminar-turbulent transition as well as turbulence in order to achieve energy efficient flight. The objectives of the NiCoFlow project are: (1) to devise the essential mathematical and computational framework to study the flow around objects with surface-mounted self-adaptive hairs, and (2) to elucidate the fundamental fluid dynamic mechanisms through which the surface coatings can enable new flow control strategies. In this work, a homogenized poro-elastic continuum models will be used to describe the flow through the hairy layers. Moreover, a computational approach to simulate two-way coupling between such homogenized continuum models and the surrounding fluid flow will be developed.. This approach will be thoroughly validated by simulating fluid flow over a flat plate attached with surface-mounted flexible hairs and comparing the numerical results against existing experimental data. The validated model will be used to perform direct numerical simulations of transitional and turbulent flows to reveal the detailed flow characteristics, and shed light on how these self-adaptive hairy features may delay the transition to turbulence and reduce the turbulent skin-friction. A potential passive control technique, relying on these nature-inspired hairy coatings, will have a large industrial impact, including applications in aeronautics, energy harvesting and the transport sector.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences zoology mammalogy cetology
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- engineering and technology materials engineering coating and films
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
100 44 Stockholm
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.