Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Exploring high-frequency DYNAmics in artificial MAGnetic frustrated systems

Objetivo

This project aims to explore the magnetization dynamics in response to microwave excitations in a class of geometrically frustrated systems called artificial spin ices. The work will lead to the development of novel functionalities in these systems, applicable to information and communications technologies. Artificial spin ices consist of lithographically patterned nanomagnets arranged on a lattice and have been shown to support collective excitations, which can be thought of as topological defects in a geometrically frustrated system and behave as mobile magnetic ‘charges’. Up to now, artificial spin ice has mainly been used as a model system for investigating fundamental effects of frustration and its consequences on defect dynamics. The primary goal of the project is to explore a novel direction in artificial spin ice dynamics: its high-frequency behavior. We aim to develop artificial spin ice into a functional material that allows the topological defects to couple with microwave magnetic fields in order to control the state of the system and, eventually, as application, create novel logical architectures based on the propagation of information along channels defined by the topological defects. To achieve this, a unique combination of ferromagnetic resonance with Lorentz Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy will be used, with guidance from state-of-the-art micromagnetic simulations. In addition, the project aims to investigate the nonlinear regime of the magnetization dynamics. The focus here will be on the behavior of the magnetization at the edges of the nanoislands, which can be used to leverage large changes in the overall orientation of the magnetization. This study will also contribute to the broader understanding of far-from-equilibrium dynamics. The work will mainly be conducted at the University of Glasgow, with measurements also performed at the Paul Scherrer Institute in Switzerland, over a period of two years.

Régimen de financiación

MSCA-IF-EF-ST - Standard EF

Coordinador

UNIVERSITY OF GLASGOW
Aportación neta de la UEn
€ 183 454,80
Dirección
UNIVERSITY AVENUE
G12 8QQ Glasgow
Reino Unido

Ver en el mapa

Región
Scotland West Central Scotland Glasgow City
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 183 454,80