Objective
My goal is to optically detect the magnetic resonance of free radicals/ROS inside cells. Radicals are suspected to play a crucial role in numerous pathogenic conditions including diseases responsible for most deaths worldwide (as arteriosclerosis, cancer, immune responses to pathogens). They are also involved in many processes in healthy cells as mitochondrial metabolism or aging of cells and part of the working mechanism of many drugs. Despite their relevance relatively little is known about where and when radicals are built, how they work or which ones play a role. Their short lifetime and reactivity poses a problem for many state of the art methods. Thus they are often a bottleneck in understanding stress responses. My goal is to develop a method, which can detect their magnetic resonance in the nanoscale. The method is based on a fluorescent defect in diamond, which changes its optical properties based on its magnetic surrounding. While this technique has been able to detect even the faint signal of a single electron spin, this technique is entirely new to biological fields. We can localize where, when and how much of a certain radical is generated with nm resolution. This is impossible with the current state of the art. Furthermore, since we obtain spectra we can also differentiate radicals to some extent. I am proposing to investigate two systems: 1) the involvement of radicals in the aging of yeast cells 2) the response of macrophages to stress. In the first project I will test the so-called free radical theory, which states that organisms age because cells accumulate free radical damage over time. In the second project I will answer the question how a macrophage reacts to the impact of a pathogen or a drug. Outcomes of this project would enable us to increase our understanding on how stress responses work on a molecular level. This will open up new possibilities to assess if and how drugs are working or how and why certain pathogens are worse than others.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine cardiology cardiovascular diseases arteriosclerosis
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9713 GZ Groningen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.