Objective
Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electric batteries
- social sciences social geography transport electric vehicles
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences chemical sciences inorganic chemistry alkaline earth metals
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.