To understand force transmission at the molecular scale, we produced mutant alleles of an ion channel adaptor subunit using CRISPR/Cas9. Importantly, these mutants almost completely eliminates the sense to external touch, without perturbing localization of the subunit to the ion channel. We next setup a theoretical model that integrates a two component system under the action of a impinging force to simulate the evolution of the open state of the mechanoelectrical transduction channel. The results are consistent with a molecular tether that transfers the force to the channel. To proof this prediction, we inserted a tension-sensitive FRET cassette into the adaptor protein and visualized the transfer of mechanical stress during touch. In order to simultaneously perform imaging and force delivery to the animals, we immobilized individual animals in microfluidic chips with integrated pneumatic actuators. Importantly, under static condition, we find that the adaptor protein is not under mechanical tension, but efficiently is set under stress when the animal is indented using the pneumatic channels. We are now currently investigating the origin of the force transmitting component, e.g. possible cytoskeletal components.