Periodic Reporting for period 2 - NEOHIRE (NEOdymium-Iron-Boron base materials, fabrication techniques and recycling solutions to HIghly REduce the consumption of Rare Earths in Permanent Magnets for Wind Energy Application)
Reporting period: 2018-08-01 to 2020-01-31
During the last decade, large research efforts were devoted to the development of highly efficient and reliable wind turbines based on Neodymium-Iron-Boron Permanent Magnets (NdFeB PM), being still necessary to break through 3 important barriers: a) Strong dependency on China for supply and high price of Rare Earth Elements (REEs). b) High difficulty of substitution of REE in PM. c) Several challenges have to be overcome for commercially viable, large-scale REE recycling.
NEOHIRE main objective is to reduce the use of Rare Earth Elements (REE), and Cobalt and Gallium in the permanent magnets used in Wind Turbine Generators (WTG).
The main conclusions of the action are:
1. Partners have developed a new powder that does not contain either heavy rare earths or cobalt or gallium in its composition.
2. Direct recycling of end of life (EoL) sintered magnets resulted in a powder whose properties are comparable to commercial powders.
3. Partners produced 5 kg of recycled powder and a prototype to validate the project approach.
4. It was proposed an alternative design for a high speed WTG. It was obtained a similar performance with 30 % reduction of NdFeB.
5. NEOHIRE magnets can be considered as not fatigue-critical components.
6. Indirect recycling methods for both bonded and sintered magnets have been developed.
7. Environmental impact of recycling and production of NEOHIRE magnets is lower than the impact of sintered magnets used at present.
NEOHIRE have developed recycling processes for both (old) sintered and (novel) resin-bonded NdFeB magnets. The Life Cycle Sustainability approach implemented in NEOHIRE has compared old and new magnets in a whole life cycle perspective (from raw materials production to the recycling of the end of life product). The overall environmental assessment is positive for the new materials and processing technologies.
NEOHIRE will help to mitigate the future bottlenecks in the material supply chain. The European Union (EU) dependency of external suppliers of some Critical Raw Materials (Dysprosium, Neodymium, Cobalt and Gallium) will be reduced. NEOHIRE technological and scientific achievements will also have an impact in other sectors where NdFeB magnets are used, such as automotive, aeronautics, medical devices or metals recycling.
Employment is one of the most sensitive issues for welfare and living standards — for individual income and self respect as much as for the EU social and tax system. As the project will directly increase the competitiveness and sustainability of the EU wind energy sector, it will contribute to reinforce the creation of employment in the sector. It will help to create as well a new recycling framework and business. It will also have an important societal impact since the electricity production costs will decrease, which could also result in a reduction of the cost of electricity for citizens. Phenomena such as climate change, the depletion of resources, growing populations, pollution and consumption levels will push changes in EU Energy Sector. Wind energy is an attractive alternative to fossil fuels. It is plentiful, renewable, widely distributed, clean and produces no greenhouse gas emissions.