Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Regularity and Stability in Partial Differential Equations

Objective

"This project focuses on several problems in Partial Differential Equations (PDEs) and the Calculus of Variations. These include:

- Optimal transport and Monge-Ampère equations.
In the last 30 years, the optimal transport problem has been found to be useful to several areas
of mathematics. In particular, this problem is related to Monge-Ampère type equations, and understanding the regularity properties of solutions to such equations is an important question with applications to several other fields.

- Stability in functional and geometric inequalities.
Whether a minimizer of some inequality is ""stable'' in some suitable sense
is an important issue in order to understand and/or predict the evolution in time of a physical phenomenon.
For instance, quantitative stability results allow one to quantify the rate of convergence of a physical system to some steady state, and they can also be used to understand how much the system changes under the influence of exterior factors.

- Di Perna-Lions theory and PDEs.
The study of transport equations with rough coefficients is a very active research area. In particular, recent developments have been used to obtain new results on the semiclassical limit for the Schr\""odinger equation and on the Lagrangian structure of transport equations with singular vector-fields (for instance, the Vlasov-Poisson equation).

These problems, although apparently different, are actually deeply interconnected.
The PI aims to use his expertise in partial differential equations and geometric measure theory to introduce ideas and techniques that will lead to new groundbreaking results.
"

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 742 428,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 742 428,00

Beneficiaries (1)

My booklet 0 0