Skip to main content

LOW valued energy sources UPgrading for buildings and industry uses

Periodic Reporting for period 2 - LOWUP (LOW valued energy sources UPgrading for buildings and industry uses)

Reporting period: 2017-11-01 to 2018-12-31

LowUP makes heating and cooling more efficient and more sustainable. A new project funded by the European Commission has just been launched and will contribute to achieving Europe’s GHG reduction targets and increase energy efficiency. LowUP – which stands for ‘Low valued energy sources UPgrading for buildings and industry uses’– will develop and demonstrate three new efficient heating and cooling technologies that will significantly reduce both CO2 emissions and primary energy consumption.
Heating and cooling accounts for 50% of the EU's annual energy consumption, of which 85% comes from burning fossil fuels, mostly coal and natural gas. Heating and cooling refers to the energy needed to warm and cool buildings, both residential and tertiary (i.e. office buildings, hospitals etc.) and includes the energy needed in nearly all industrial processes to manufacture products that we use every day.
Led by the Spanish firm ACCIONA, LowUP gathers 13 partners (3 large companies, 3 research and technology organisations and 7 SMEs) from 7 European countries. During 42 months, they will develop and demonstrate in a relevant environment one heating and one cooling system for office buildings, and one heat recovery system for industrial processes.
These solutions will combine innovative heat and cool recovery technologies to create solutions that are able to use low valued energy sources which are currently not well-used or wasted to produce and meet heating or cooling demands in buildings and industries; specifically, the systems are:
- HP-LowUP Waste heat recovery and upgrading via heat pump. Usage: Industry, involving low temperature processes. Challenge: To recover heat waste from an industrial process through innovative heat pumps and heat exchangers.
- HEAT-LowUP Low exergy system directly fed by recovered heat from solar panels & sewage water. Usage: New or refurbished middle size tertiary buildings. Challenge: To develop an integrated solution that produces, stores and distributes low temperature heat(30-35°C) using: PV module, waste water heat recovery, multi-temperature storage system and radiant floor heating system
- Cool-LowUP Low exergy system directly fed by renewable and free energy sources. Usage: New or refurbished middle size tertiary buildings. Challenge: To develop an integrated cooling system (17-19°C) based on ambient air and tap water using: wet cooling tower, water to water heat exchanger, storage system and chilled beams
The systems will be demonstrated at four demo sites: a pilot office building in Seville (Spain, ACCIONA Construction); a water treatment plant in Madrid (Canal de Isabel II & ACCIONA Water); a Pulp and Paper mill in Setubal (Portugal, The Navigator Company); and a student hall in Badajoz (Spain, University of Extremadura).
By using these low valued energy sources, many times wasted so far, and, by providing heating and cooling at temperature close to room temperature, the total CO2 emissions for buildings and the energy demand will be reduced as a result of more efficient energy conversion processes and systems.
Beyond these savings, results generated by LowUP may open new opportunities for the heating and cooling industry, create new jobs and reduce Europe’s dependency on imported energy. Market studies and exploitation strategies will be carried out to evaluate these benefits and maximise the impact of the technologies that will be developed and demonstrated.
During the first 12 months of LowUP project, we successfully launched our actions and have made progress on the conceptual design and modelling of the three systems to be developed. This included the complete review of the different individual components (mostly provided by the 6 industrial partners of the project). The models for the three systems have been developed using different software systems such as Trnsys. For that, the definition of a control strategies, thus is, the logic rules that make possible the operation of the LowUP system, have been developed. For the LowUP systems, modelling is quite essential and this requires a certain level of complexity to make the production of heating and cooling more energy-efficient.
During the second period, the project has been mostly focused on the integration of the individual components developed in the first period of the project in the different test sites considered. This has resulted in a set of activities related to the analysis and adaptation of the test sites and prototypes to allow a proper system integration. Engineering design, sites adaptation and system installation have taken a principal role, and the first start-ups have taken place.
In parallel, the transversal activities of Exploitation, Communication and the own Management of the project have been continued.
The project is creating a series of results that will have an impact on the heating and cooling sectors of both buildings and industries, reducing the amount of primary energy normally required in these sectors.
-Result 1: Low exergy heating systems from renewable and waste heat (Heat-LowUP). This includes the upgrade of PVT collector, a hybrid heat recovery, multi sources and multi loads stratified thermal storage tank and an innovative low-thickness radiant floor
-Result 2: Low exergy cooling systems from adiabatic coolers and tap water (Cool-LowUP), involving an advanced PCM storage and an enhanced high efficiency chilled beam
-Result 3: Heat recovery from wasted sources. Increased efficiency prototypes for a “Heat exchanger” and a Heat pump are being developed.
-Result 4: Predictive Advanced control system
-Result 5: Effective and affordable integration of LowUP systems component.
From the point of view of the market roll-out, some of the partners have started to consider the commercialization of the components just developed within LowUP (as is the case of RDZ with the enhanced radiant floor or with Pozzi that also wishes to manufacture and commercialise the new design for the heat exchanger). The consortium is considering these options upon the completion of the LowUP systems.
LowUP logo
LowUP in Cordis
LowUP team with first prototype delivered by GEA