European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Efficient Additivated Gasoline Lean Engine

Objectif

The decrease of CO2 & particulates emissions is a main challenge of the automotive sector. European OEMs and automotive manufacturers need new long term technologies, still to be implemented by 2030. Currently, hybrid powertrains are considered as the main trend to achieve clean and efficient vehicles. EAGLE project is to improve energy efficiency of road transport vehicles by developing an ultra-lean Spark Ignition gasoline engine, adapted to future electrified powertrains. This new concept using a conventional engine architecture will demonstrate more than 50% peak brake thermal efficiency while reducing particulate and NOx emissions. It will also reach real driving Euro 6 values with no conformity factor. This innovative approach will consequently support the achievement of long term fleet targets of 50 g/km CO2 by providing affordable hybrid solution.
EAGLE will tackle several challenges focusing on:
• Reducing engine thermal losses through a smart coating approach to lower volumetric specific heat capacity under 1.5 MJ/m3K
• Reaching ultra-lean combustion (lambda > 2) with very low particulate (down to 10 nm) emission by innovative hydrogen boosting
• Developing breakthrough ignition system for ultra-lean combustion
• Investigating a close loop combustion control for extreme lean limit stabilization
• Addressing and investigating NOx emissions reduction technologies based on a tailor made NOx storage catalyst and using H2 as a reducing agent for SCR.
A strong engine modeling approach will allow to predict thermal and combustion performances to support development and assess engine performances prior to single and multi-cylinder test bench application. An interdisciplinary consortium made of nine partners from four different countries (France, Germany, Italy, Spain) will share its cutting-edge know-how in new combustion process, sensing, control, engine manufacturing, ignition system, simulation & modeling, advanced coating, as well as after-treatment systems.

Appel à propositions

H2020-GV-2016-2017

Voir d’autres projets de cet appel

Sous appel

H2020-GV-2016-INEA

Coordinateur

IFP Energies nouvelles
Contribution nette de l'UE
€ 1 400 626,25
Adresse
AVENUE DE BOIS PREAU 1 & 4
92500 Rueil Malmaison
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Hauts-de-Seine
Type d’activité
Research Organisations
Liens
Coût total
€ 1 400 626,25

Participants (13)