Objective
Cryptographic implementations are traditionally evaluated based on a trade-off between security and efficiency. However, when it comes to physical security against attacks exploiting side-channel leakages or fault insertions, this approach is limited by the difficulty to define the adversaries (e.g. their knowledge about the target implementation) and to specify sound physical assumptions. Quite naturally, the problem becomes even more challenging in contexts where implementations can be maliciously modified during design or fabrication via so-called hardware Trojans. To a large extent, these vulnerabilities echo the general challenge of restoring trust that is faced by cryptographic research in view of the recent Snowden revelations. In this context, we believe that the design of small components able to perform secure computations locally will be an important building block of future information systems. For this purpose, the SWORD project envisions a paradigm shift in embedded security, by adding trust as an essential element in the evaluation of physically secure objects. Our two main ingredients to reach this ambitious goal are a good separation between mathematics and physics, and improved transparency in security evaluations. That is, we want cryptographic implementations to rely on physical assumptions that can be empirically verified, in order to obtain sound security guarantees based on mathematical proofs or arguments. And we want to make the empirical verification of physical assumptions more transparent, by considering open source hardware and software. By allowing adversaries and evaluators to know implementation details, we expect to enable a better understanding of the fundamentals of physical security, therefore leading to improved security, efficiency and trust in the longer term. That is, we hope to establish security guarantees based on a good understanding of the physics, rather than the (relative) misunderstanding caused by closed systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1348 LOUVAIN LA NEUVE
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.