Objective
Cells are complex, autonomous genetic machines with rich information processing capabilities. Synthetic Biology builds on these properties to design novel, synthetic genetic programs in cells with the aim of benefiting humans. Yet, safety and efficiency issues require creation of synthetic circuits that are reliable over a large range of operating conditions and stable to all sorts of perturbations. This is a tremendous challenge for synthetic biologists, as the robustness of any circuit is limited by their high dependence on the cellular host machinery and the fundamental stochastic nature of gene expression. Taking inspiration from physics and engineering we have imagined a computer-based feedback loop that can remotely, in real-time, control the state of a synthetic genetic program running in cells. Here, we will combine microfluidics, optogenetics, structured illumination, inference methods and control algorithm into such a real time control device of gene expression for yeast cells. We will then study how cells can be controlled at different scales and with increasing levels of complexity from a simple circuit to a simple multicellular ecosystem. Specifically, we aim at:
(1) Understanding the potential and limits of such a control method. We will ask to what extent robust control can be achieved at the single cell level over a broad range of operating conditions.
(2) Taking control of complex circuits. In particular, we will take control of key genes of the large regulatory network in charge of yeast adaptation to osmotic stress and dissect their roles in setting the mechano-biology properties of yeast.
(3) Taking control of multicellular systems. We will control the collective dynamics of a population of cells via single cell control at selected locations.
This framework will establish solid scientific and technological foundations of a novel research area combining physics, engineering and synthetic biology to take control of living systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- natural sciences biological sciences synthetic biology
- natural sciences biological sciences cell biology
- natural sciences biological sciences ecology ecosystems
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.