Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Death and Life of Catalysts: a Theory-Guided Unified Approach for Non-Critical Metal Catalyst Development

Objective

Most of the developments in catalyst are still based on serendipitous and trial-and-error approaches, in which potential systems can be overlooked simply because of the sub-optimal conditions of the initial activity assessment. Mechanistic and kinetic studies could provide a framework for a more adequate assessment of new catalysts, but such rigorous experiments are not practical for general catalyst discovery. Modern chemical theory and computations hold a promise to be employed in new efficient theory-guided approaches for rational catalyst and process development.

The main aim of DeLiCat is to formulate a hierarchical computational strategy for the design and synthesis of new non-critical metal-based catalysts for sustainable chemical transformations. New, durable and cheap, yet, highly active and selective tailor-made catalyst for hydrogenation of carboxylic acids and their esters as well as for acceptorless dehydrogenation of alcohols will be developed. The research will follow an innovative strategy combining advanced chemical theory, computational screening and experimental approaches from the fields of homogeneous and heterogeneous catalysis in an efficient knowledge exchange loop. Computer simulations will reveal complex reaction networks that determine the “death” and the “life” of catalyst systems. These insights will be used in targeted design of novel multifunctional catalyst systems to direct the selectivity of the reaction network and to prevent deactivation paths. Complementary experimental studies will guide and validate the theoretical predictions.

DeLiCAT represents a leap forward in unified first principles-guided catalyst design for liquid phase chemical transformations. The new theoretical concepts, methodological advances as well as the novel superior catalyst systems developed here will be applicable in various areas including biomass valorization, homogeneous and heterogeneous catalysis as well as hydrogen technology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 973 438,04
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 973 438,04

Beneficiaries (2)

My booklet 0 0