Objective Most of the developments in catalyst are still based on serendipitous and trial-and-error approaches, in which potential systems can be overlooked simply because of the sub-optimal conditions of the initial activity assessment. Mechanistic and kinetic studies could provide a framework for a more adequate assessment of new catalysts, but such rigorous experiments are not practical for general catalyst discovery. Modern chemical theory and computations hold a promise to be employed in new efficient theory-guided approaches for rational catalyst and process development. The main aim of DeLiCat is to formulate a hierarchical computational strategy for the design and synthesis of new non-critical metal-based catalysts for sustainable chemical transformations. New, durable and cheap, yet, highly active and selective tailor-made catalyst for hydrogenation of carboxylic acids and their esters as well as for acceptorless dehydrogenation of alcohols will be developed. The research will follow an innovative strategy combining advanced chemical theory, computational screening and experimental approaches from the fields of homogeneous and heterogeneous catalysis in an efficient knowledge exchange loop. Computer simulations will reveal complex reaction networks that determine the “death” and the “life” of catalyst systems. These insights will be used in targeted design of novel multifunctional catalyst systems to direct the selectivity of the reaction network and to prevent deactivation paths. Complementary experimental studies will guide and validate the theoretical predictions. DeLiCAT represents a leap forward in unified first principles-guided catalyst design for liquid phase chemical transformations. The new theoretical concepts, methodological advances as well as the novel superior catalyst systems developed here will be applicable in various areas including biomass valorization, homogeneous and heterogeneous catalysis as well as hydrogen technology. Fields of science natural scienceschemical sciencesorganic chemistryorganic acidsnatural scienceschemical sciencesorganic chemistryalcoholsnatural scienceschemical sciencescatalysisengineering and technologyenvironmental engineeringenergy and fuelsrenewable energyhydrogen energynatural sciencesmathematicsapplied mathematicsmathematical model Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2016-COG - ERC Consolidator Grant Call for proposal ERC-2016-COG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator TECHNISCHE UNIVERSITEIT DELFT Net EU contribution € 1 973 438,04 Address Stevinweg 1 2628 CN Delft Netherlands See on map Region West-Nederland Zuid-Holland Delft en Westland Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (2) Sort alphabetically Sort by Net EU contribution Expand all Collapse all TECHNISCHE UNIVERSITEIT DELFT Netherlands Net EU contribution € 1 973 438,04 Address Stevinweg 1 2628 CN Delft See on map Region West-Nederland Zuid-Holland Delft en Westland Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 TECHNISCHE UNIVERSITEIT EINDHOVEN Participation ended Netherlands Net EU contribution € 26 085,96 Address Groene loper 3 5612 AE Eindhoven See on map Region Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00