Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Chemically and Thermally Stable Nano-sized Discrete Organic Cage Compounds

Objective

Shape-persistent organic cage compounds consisting only of covalent bonds are fascinating synthetically targets, because they are studied as hosts for the selective recognition of guest molecules, such as artificial lectins, for catalysis in confined space or for the construction of a new type of porous material. For the latter, the shape-persistency and rigidity of the cage cavity is of utmost importance. There are in principle two existing strategies for the synthesis of shape-persistent organic cage compounds. Strategy I: A stepwise approach by irreversible reactions. Here, the advantage is the chemical stability of the target compound due to the intrinsic stabilities of the formed bonds. The disadvantage of this approach is in general the low overall yield, because the system does not allow any ‘self-correction’ of once formed bonds. This is different for the other approach used in Strategy II: By using dynamic covalent bond formation as synthetic tool, shape-persistent organic cages can be constructed from rather simple molecular building blocks in one step. Here, the yields are usually very high or even quantitatively, because the reversibility of the reaction allows the system to self-correct. Unfortunately, the resulting compounds are more prone to chemical cleavage of the cages than those synthesized by the irreversible approach.
Within this project, we will combine the advantages of both strategies to synthesize chemically and thermally stable nano-sized discrete organic cage compounds in a two-step approach in high yields. To demonstrate the versatility and synthetic power of this approach, pure hydrocarbon cages will be synthesized in a few steps in high yields. Finally, this strategy will make for the first time open and closed-shell fullerenes and heterofullerenes that are isomerically pure, accessible.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 996 000,00
Address
SEMINARSTRASSE 2
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 996 000,00

Beneficiaries (1)

My booklet 0 0