Objective
The cerebral cortex consists of an extraordinary number and great diversity of neurons. Yet, how the cortical entity, with all its functional neuronal circuits, arises from the neural stem cells (NSCs) in the developing neuroepithelium is a major unsolved question in Neuroscience. Radial glia progenitors (RGPs) are responsible for producing nearly all neocortical neurons and a certain fraction of cortical glia including astrocytes. Our recent efforts provide evidence for a high degree of non-stochasticity and thus deterministic nature of RGP behavior in the mammalian neocortex. However, the cellular and molecular mechanisms controlling RGP lineage progression through proliferation, neurogenesis and especially gliogenesis are unknown. In a pursuit to obtain definitive insights into these fundamental questions we assess RGP lineage progression at the unprecedented single cell resolution, using the unique genetic MADM (Mosaic Analysis with Double Markers) technology. MADM offers an unparalleled approach to visualize and concomitantly manipulate sparse clones and small subsets of genetically defined neurons. Within the scope of this project we will use multidisciplinary experimental approaches to establish a research program with the following major objectives: We will 1) Functionally dissect the relative contribution of cell-autonomous intrinsic signaling and cell-non-autonomous effects in RGP lineage progression; 2) Define the principles of lineage progression in human RGPs in situ using MADM technology in cerebral organoid system; 3) Decipher the logic of glia lineage progression in the neocortex. The ultimate goal of the proposed research is to establish a definitive quantitative framework and mechanistic model of lineage progression in cortical NSCs. As such, the proposed research shall precipitate into extensive conceptual progress regarding the fundamental cellular and molecular principles of cerebral cortex development.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- medical and health sciences clinical medicine psychiatry
- medical and health sciences medical biotechnology genetic engineering
- medical and health sciences medical biotechnology cells technologies stem cells
- natural sciences mathematics pure mathematics mathematical analysis functional analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.