Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-04-19

Self-Organising Low-Dimensional Electronic Structures

Objectif

The aim of this project is to make quantum dots and wires using materials and process steps which naturally self-organise into low-dimensional systems. This could provide a viable alternative to the use of nanolithography in producing quantum size effects in zero and one dimensions. The work will be targeted at optical and transport properties.
Electronic material systems are being investigated with a view to making quantum dots and wires using materials and process steps that naturally self organize into low dimensional systems.

Growth techniques have been developed to produce a range of zeolites suitable for semiconductor containment. Adequately sized single crystal zeolite Y, silicalite II, ALPO5, SAPO4, rho, silicate I and MCM41 have been grown. Sufficient stocks of these are now held for semiconductor incorporation. These zeolites should enable us to produce dots and wires in the size range 5.3 to 38 angstroms. Indium phosphorus and gallium phosphorus have been inserted into the channels of zeolite Y and silicon into silicates. Nuclear magnetic resonance (NMR) indicates that some measure of success has been achieved, but photoluminescence (PL) is very weak.

Work on the chemical structure of the porous silicon surface has demonstrated that the role of hydrogen is as a passivating agent not as a luminescence centre. Total replacement of the hydrogen by oxygen can result in highly luminescent material. Transport measurements in conjunction with transmission electron microscopy (TEM) indicate that the porous silicon examined does not contain quantum wires but is made up of isolated dots of silicon in a silica matrix. Calculations using a new ab initio real space technique are under way to examine the properties of these structures.

It is now possible for us to controllably grow dots of the semimetal erbium arsenide in a gallium arsenide matrix with diameters in the range 10 to 25 angstroms. A number of wires with a diameter of about 20 angstroms have also been grown and made into samples for transport studies. Universal conductance fluctuations have been observed in these structures.
APPROACH AND METHODS

Three very different systems are being investigated with a view to achieving self-organising low-dimensional structures. The first is to use a class of solids known as zeolites to provide template for the growth of semiconductors. Zeolite crystals grow with naturally occurring cages and columns. The dimensions of these are uniquely defined by the crystal structure, and to some extent, this can be tailored to meet specific requirements. We plan to grow a range of custom designed zeolites and to incorporate semiconductors into them, primarily by MOCVD. The growth work will be guided by theoretical calculations of the optical and transport properties, and supported by detailed luminescence and transport measurements.

The second system that is being investigated is based on a phase separation process which has been observed to occur during MBE. Using this technique it is possible to produce a three dimensional array of quantum dots with well defined sizes chosen within the range 12 - 50 angstroms. So far, this work has produced erbium arsenide dots in a gallium arsenide matrix, but other materials will be produced using analogous techniques.

The third system is produced by an electrochemical etching technique. This is a naturally limiting process which is believed to produce narrow wires of silicon which exhibit quantum confinement. This work will be conducted in collaboration with the EOLIS (7228) project.

POTENTIAL

The main attraction of using these techniques for producing low-dimensional systems is their potential low cost and high yield. Applications in optical devices, communications and fast signal processing are foreseen.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Données non disponibles

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

Données non disponibles

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

Données non disponibles

Coordinateur

University of Manchester
Contribution de l’UE
Aucune donnée
Adresse
Oxford Road
M13 9PL Manchester
Royaume-Uni

Voir sur la carte

Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (5)

Mon livret 0 0