Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

ConfocAl Microscopy and real-time Rheology of dynamIc hyroGels

Objective

Hydrogels cross-linked through supramolecular interactions are highly dependant on the dynamic charac- teristics of the physical cross-links. Few fundamental studies have been undertaken to quantitatively de- scribe structure-property relationships for these types of systems. Hydrogels formed from CB[8]-mediated supramolecular physical cross-linking mechanisms have gained significant interest on account of their excel- lent physical and mechanical properties such as self-healing and shear-thinning. This supramolecular motif has been further exploited to introduce and compatibilise a wide variety of different materials into hydrogel networks without phase separation, forming hybrid composite hydrogels attributed with unique and emergent properties. This proposal aims to pioneer the combination of several state-of-the-art characterisation tech- niques into an unique experimental setup (CAM-RIG), which will combine super-resolution and confocal microscopy imaging modalities with simultaneous strain-controlled rheological measurements to investigate fundamental structure-property relationships of these systems. For the first time it will be possible to decon- volute the molecular-level dynamics of the supramolecular physical cross-links from chain entanglement of the polymeric networks and understand their relative contributions on the resultant properties of the hydrogels. Using the fundamental insight gained, a set of key parameters will be determined to maximise the potential of supramolecular biocompatible hydrogels, driving paradigm shifts in sustainable science and biomaterial applications through the precise tuning of physical properties.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 038 120,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 038 120,00

Beneficiaries (1)

My booklet 0 0