Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Collective wisdom driving public health policies

CORDIS fournit des liens vers les livrables publics et les publications des projets HORIZON.

Les liens vers les livrables et les publications des projets du 7e PC, ainsi que les liens vers certains types de résultats spécifiques tels que les jeux de données et les logiciels, sont récupérés dynamiquement sur OpenAIRE .

Livrables

Final Report on the Distribution of the Community Contribution (s’ouvre dans une nouvelle fenêtre)

Describes the final outcomes of the project based on the corresponding Management Report on M36 but will be distributed to public.

Health in All Policy Making Utilizing Big Data v1 (s’ouvre dans une nouvelle fenêtre)

Health in All Policy Making Utilizing Big Data v1. Merge Deliverables: D5.11+D5.13

Communication and Collaboration Plan and Activities v2 (s’ouvre dans une nouvelle fenêtre)

This series of deliverables will describe the dissemination and collaboration strategy and the activities followed during the reporting periods as well as the results from these activities (see Section 2.2.3 for a detailed description of the planned dissemination strategy for CrowdHEALTH). In particular, a report on TMU activities at International level will be included.

Use Case Scenarios Definition and Design v3 (s’ouvre dans une nouvelle fenêtre)

This document will outline the design of the scenarios, including a description of them, the scenario requirements, the infrastructures and platforms that will be utilized and the use of CrowdHEALTH technologies.

Use Case Scenarios Definition and Design v1 (s’ouvre dans une nouvelle fenêtre)

This document will outline the design of the scenarios, including a description of them, the scenario requirements, the infrastructures and platforms that will be utilized and the use of CrowdHEALTH technologies.

Conceptual Model and Reference Architecture v1 (s’ouvre dans une nouvelle fenêtre)

This report will identify the key components of CrowdHEALTH and define the interfaces and interactions between them. An internal report will be developed in M3 and will serve as a basis to kick-off the research activities of the project (planned to start in M4).

Data Visualization Framework: Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Data Visualization Framework: Design and Prototype Merge Deliverables: D4.13 + D4.14 + D4.15 + D4.16

Reliable Information Provision in Healthcare: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Reliable Information Provision in Healthcare: Final Design and Prototype Merge deliverables: D3.20 + D3.22

Advanced Interoperability Techniques: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Advanced Interoperability Techniques: Final Design and Prototype Merge deliverables: D3.10 + D3.11 + D3.13 + D3.14

Adoption Roadmap (s’ouvre dans une nouvelle fenêtre)

This report will provide a roadmap for adoption and exploitation of CrowdHEALTH outcomes by different stakeholders in multidisciplinary cases. The roadmap will highlight current concerns and limitations in the healthcare ecosystem and means to overcome them.

State of the Art and Requirements Analysis v3 (s’ouvre dans une nouvelle fenêtre)

This report will examine the SotA for the technologies involved in CrowdHEALTH, present possible future trends and analyse the identified both use case and technical requirements. In M3 an internal deliverable will be provided in order to provide input to the initial conceptual model and architecture. During the course of the project the technologies and requirements related to CrowdHEALTH will continue being investigated in order to ensure that the objectives and innovations of the project are valid, work is performed taking into account the latest SotA and developments fulfil the identified goals and requirements.

Initial Publication Package (s’ouvre dans une nouvelle fenêtre)

This deliverable will focus on the publication of the initial set of materials that will define and promote project’s identity. It will include the creation of a project logo, a project factsheet, an MS PowerPoint presentation providing a general description of CrowdHEALTH, project’s official web site and templates for the official documents to be developed within the project.

Clinical Pathways Mining: Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Clinical Pathways Mining: Design and Prototype Merge Deliverables: D5.7+D5.8+D5.9+D5.10

Modelling and Evaluation of Policies v1 (s’ouvre dans une nouvelle fenêtre)

The deliverable D5.1 will describe the models and the methodologies for the evaluation of public health policies.

Data Sources and Gateways: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This document will outline the architecture and design of the description framework and the specification of the envisioned abstracted API for all information sources.

Communication and Collaboration Plan and Activities v1 (s’ouvre dans une nouvelle fenêtre)

This series of deliverables will describe the dissemination and collaboration strategy and the activities followed during the reporting periods as well as the results from these activities (see Section 2.2.3 for a detailed description of the planned dissemination strategy for CrowdHEALTH). An internal plan will be developed in M6 to drive the initial dissemination activities of the project.

Data-driven Analytics for Risk Stratification: Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Data-driven Analytics for Risk Stratification: Design and Prototype Merge Deliverables: D5.4 + D5.5 + D5.6

Modelling and Evaluation of Policies v2 (s’ouvre dans une nouvelle fenêtre)

Modelling and Evaluation of Policies

Conceptual Model and Reference Architecture v3 (s’ouvre dans une nouvelle fenêtre)

This report will identify the key components of CrowdHEALTH and define the interfaces and interactions between them. An internal report will be developed in M3 and will serve as a basis to kick-off the research activities of the project (planned to start in M4).

Standardisation Plan and Activities v2 (s’ouvre dans une nouvelle fenêtre)

This report will detail all engagement with standardisation bodies or similar fora and the corresponding potential contributions (see Section 2.2.2.4 for a detailed description of the planned standardisation strategy for CrowdHEALTH).

HHRs Networks Formulation: Design and Prototype (s’ouvre dans une nouvelle fenêtre)

HHRs Networks Formulation: Design and Prototype Merge deliverables: D3.15 + D3.16 + D3.17 + D3.18

Reliable Information Provision in Healthcare: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This document will outline the information model and describe the mechanisms investigated and developed in to provide reliable information from data sources. The deliverable will provide the relevant specification as well as descriptions of the mechanisms to overcome the intrinsic information volatility in the healthcare ecosystem.

Health in All Policy Making Utilizing Big Data v2 (s’ouvre dans une nouvelle fenêtre)

Health in All Policy Making Utilizing Big Data v2 Merge Deliverables: D5.12 + D5.14

Advanced Interoperability Techniques: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This document will provide detailed specifications for the interoperability techniques and mechanisms.

Multimodal Forecasting and Casual Techniques: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Multimodal Forecasting and Casual Techniques: Final Design and Prototype Merge Deliverables: D5.16 + D5.17 + D5.19 + D5.20

Integrated Holistic Security and Privacy Framework: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Integrated Holistic Security and Privacy Framework: Final Design and Prototype Merge Deliverables: D4.18 + D4.19 + D4.21 + D4.22

Integration of Results v1 (s’ouvre dans une nouvelle fenêtre)

This report will consolidate the results from the work performed in order to provide the integrated view of CrowdHEALTH outcomes.

Standardisation Plan and Activities v1 (s’ouvre dans une nouvelle fenêtre)

This report will detail all engagement with standardisation bodies or similar fora and the corresponding potential contributions (see Section 2.2.2.4 for a detailed description of the planned standardisation strategy for CrowdHEALTH).

Use Cases Evaluation and Recommendations v1 (s’ouvre dans une nouvelle fenêtre)

These reports will include the outcomes of the evaluation (in terms of consistency, correctness, completeness) for the CrowdHEALTH technologies and the benefits they provide in different cases, as well as recommendations to the research activities of the project following the evaluation process. The intermediate versions will feed back to the architecture specification while the final version will act as a “Best practices and Lessons Learned” report.

Use Case Scenarios Definition and Design v2 (s’ouvre dans une nouvelle fenêtre)

This document will outline the design of the scenarios, including a description of them, the scenario requirements, the infrastructures and platforms that will be utilized and the use of CrowdHEALTH technologies.

Integrated Holistic Security and Privacy Framework: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This document will provide a detailed architecture of the holistic security and privacy framework including the trust management, data anonymization, access control and authorization mechanisms.

Data Sources and Gateways: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Data Sources and Gateways: Final Design and Prototype Merge deliverables: D3.6 + D3.8

State of the Art and Requirements Analysis v2 (s’ouvre dans une nouvelle fenêtre)

This report will examine the SotA for the technologies involved in CrowdHEALTH, present possible future trends and analyse the identified both use case and technical requirements. In M3 an internal deliverable will be provided in order to provide input to the initial conceptual model and architecture. During the course of the project the technologies and requirements related to CrowdHEALTH will continue being investigated in order to ensure that the objectives and innovations of the project are valid, work is performed taking into account the latest SotA and developments fulfil the identified goals and requirements.

Generating and Analyzing Knowledge Framework: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Generating and Analyzing Knowledge Framework: Final Design and Prototype Merge deliverables: D4.8 + D4.9 + D4.11 + D4.12

Communication and Collaboration Plan and Activities v3 (s’ouvre dans une nouvelle fenêtre)

This series of deliverables will describe the dissemination and collaboration strategy and the activities followed during the reporting periods as well as the results from these activities (see Section 2.2.3 for a detailed description of the planned dissemination strategy for CrowdHEALTH). In particular, a report on TMU activities at International level will be included.

Generating and Knowledge Framework: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This document will provide detailed specifications for the mechanisms and models that generate contextual knowledge in healthcare.

State of the Art and Requirements Analysis v1 (s’ouvre dans une nouvelle fenêtre)

This report will examine the SotA for the technologies involved in CrowdHEALTH, present possible future trends and analyse the identified both use case and technical requirements. In M3 an internal deliverable will be provided in order to provide input to the initial conceptual model and architecture. During the course of the project the technologies and requirements related to CrowdHEALTH will continue being investigated in order to ensure that the objectives and innovations of the project are valid, work is performed taking into account the latest SotA and developments fulfil the identified goals and requirements.

Health Record Structure: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This document will outline the health records properties that will extend current structures with holistic health attributes as well with social attributes regarding their behavioural, interaction and operation patterns within a network of HHRs.

Multimodal Forecasting and Causal Techniques: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This deliverable describes the forecasting, simulation and causal mechanisms analysis functionality of the policies development toolkit.

Data-driven Analytics for Risk Stratification: Design and Open Specification v1 (s’ouvre dans une nouvelle fenêtre)

This deliverable will provide the processes and techniques for the risk assessment and stratification.

Use Cases Evaluation and Recommendations v3 (s’ouvre dans une nouvelle fenêtre)

These reports will include the outcomes of the evaluation (in terms of consistency, correctness, completeness) for the CrowdHEALTH technologies and the benefits they provide in different cases, as well as recommendations to the research activities of the project following the evaluation process. The intermediate versions will feed back to the architecture specification while the final version will act as a “Best practices and Lessons Learned” report. This report will also include Evaluation Outcome of Chronic Kidney Disease Use Case from TMU.

Health Record Structure: Final Design and Prototype (s’ouvre dans une nouvelle fenêtre)

Health Record Structure: Final Design and Prototype Merge deliverables: D3.2 + D3.4

Use Cases Evaluation and Recommendations v2 (s’ouvre dans une nouvelle fenêtre)

These reports will include the outcomes of the evaluation (in terms of consistency, correctness, completeness) for the CrowdHEALTH technologies and the benefits they provide in different cases, as well as recommendations to the research activities of the project following the evaluation process. The intermediate versions will feed back to the architecture specification while the final version will act as a “Best practices and Lessons Learned” report.

Conceptual Model and Reference Architecture v2 (s’ouvre dans une nouvelle fenêtre)

This report will identify the key components of CrowdHEALTH and define the interfaces and interactions between them. An internal report will be developed in M3 and will serve as a basis to kick-off the research activities of the project (planned to start in M4).

Advanced Interoperability Techniques: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

This prototype will implement the mechanisms specified in D3.5.

Policiy Development Toolkit (s’ouvre dans une nouvelle fenêtre)

Policiy Development Toolkit Merge Deliverables: D5.21 + D5.22

Data Sources and Gateways: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

This prototype will deliver the software implementations of the gateways framework and the unified APIs.

Integrated Holistic Security and Privacy Framework: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

These prototypes will deliver the envisioned integrated holistic security and privacy framework.

Multimodal Forecasting and Causal Techniques: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

Is the software prototype for the above deliverables D5.15/D5.16/D5.17.

Mobile App & User Manual in Spanish (s’ouvre dans une nouvelle fenêtre)

Is the software prototype for deliverable D5.23. The App will be uploaded to Google Play.

Use Cases Implementation and Experimentation v3 (s’ouvre dans une nouvelle fenêtre)

These prototypes will deliver the services for the different scenarios and showcase the applicability of the CrowdHEALTH technologies under different applications and contexts.

Reliable Information Provision in Healthcare: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

These prototypes will deliver the mechanisms managing the uncertainty and volatility following the design and specifications in D3.19/D20.

Health Record Structure: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

These prototypes will deliver the enriched HHR structures specified in D3.1/D3.2 including mechanisms enabling dynamic patterns exploitation for real-time adaptation.

Generating and analysing knowledge framework: Software Prototype v1 (s’ouvre dans une nouvelle fenêtre)

These prototypes will implement the mechanisms specified in D4.7/D4.8/D4.9.

Use Cases Implementation and Experimentation v1 (s’ouvre dans une nouvelle fenêtre)

These prototypes will deliver the services for the different scenarios and showcase the applicability of the CrowdHEALTH technologies under different applications and contexts.

Use Cases Implementation and Experimentation v2 (s’ouvre dans une nouvelle fenêtre)

These prototypes will deliver the services for the different scenarios and showcase the applicability of the CrowdHEALTH technologies under different applications and contexts.

Data Management Plan (s’ouvre dans une nouvelle fenêtre)

CrowdHEALTH will participate in the Pilot on Open Research Data in H2020 and will endeavour to offer open access to its scientific results reported in publications, to the relevant scientific data and to data generated during the course of the project. The plan will identify the best practices and specific standards for the generated data and assess their suitability for sharing and reuse in accordance with official guidelines (additional information is provided in Section 2.2.4).

Publications

Aggregating Heterogeneous Health Data through an Ontological Common Health Language (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis
Publié dans: 2017 10th International Conference on Developments in eSystems Engineering (DeSE), 2017, Page(s) 175-181, ISBN 978-1-5386-1721-2
Éditeur: IEEE
DOI: 10.1109/DeSE.2017.9

Plug‘n’play IoT Devices: An Approach for Dynamic Data Acquisition from Unknown Heterogeneous Devices (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Dimosthenis Kyriazis
Publié dans: Complex, Intelligent, and Software Intensive Systems, 2017, Page(s) 885-895, ISBN 978-3-319-61566-0
Éditeur: Springer International Publishing
DOI: 10.1007/978-3-319-61566-0_84

CrowdHEALTH: Holistic Health Records and Big Data Analytics for Health Policy Making and Personalized Health (s’ouvre dans une nouvelle fenêtre)

Auteurs: Dimosthenis Kyriazis, Serge Autexier, Iván Brondino, Michael Boniface, Lucas Donat, Vegard Engen, Rafael Fernandez, Ricardo Jimenez-Peris, Blanca Jordan, Gregor Jurak, Athanasios Kiourtis, Thanos Kosmidis, Mitja Lustrek, Ilias Maglogiannis, John Mantas, Antonio Martinez, Argyro Mavrogiorgou, Andreas Menychtas, Lydia Montandon, Cosmin-Septimiu Nechifor, Sokratis Nifakos, Alexandra Papageorgiou, Ma
Publié dans: Informatics Empowers Healthcare Transformation, 2017, Page(s) 19 - 23, ISBN 978-1-61499-781-8
Éditeur: IOS Press
DOI: 10.3233/978-1-61499-781-8-19

Acquiring the Ontological Representation of Healthcare Data Through Metamodeling Techniques (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis, Marinos Themistocleous
Publié dans: Information Systems, 2017, Page(s) 324-336, ISBN 978-3-319-65930-5
Éditeur: Springer International Publishing
DOI: 10.1007/978-3-319-65930-5_27

A Comparative Study in Data Mining: Clustering and Classification Capabilities (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Dimosthenis Kyriazis, Marinos Themistocleous
Publié dans: Information Systems, 2017, Page(s) 82-96, ISBN 978-3-319-65930-5
Éditeur: Springer International Publishing
DOI: 10.1007/978-3-319-65930-5_7

A Comparative Study of Classification Techniques for Managing IoT Devices of Common Specifications (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Dimosthenis Kyriazis
Publié dans: Economics of Grids, Clouds, Systems, and Services, 2017, Page(s) 67-77, ISBN 978-3-319-68066-8
Éditeur: Springer International Publishing
DOI: 10.1007/978-3-319-68066-8_6

Gaining the Semantic Knowledge of Healthcare Data through Syntactic Models Transformations (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis
Publié dans: 2017 International Symposium on Computer Science and Intelligent Controls (ISCSIC), 2017, Page(s) 102-107, ISBN 978-1-5386-2941-3
Éditeur: IEEE
DOI: 10.1109/ISCSIC.2017.13

Towards a Secure Semantic Knowledge of Healthcare Data Through Structural Ontological Transformations (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis
Publié dans: Joint Conference on Knowledge-Based Software Engineering, 2018, Page(s) 178-188
Éditeur: Springer International Publishing
DOI: 10.1007/978-3-319-97679-2_18

FHIR Ontology Mapper (FOM): Aggregating Structural and Semantic Similarities of Ontologies towards their Alignment to HL7 FHIR (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis
Publié dans: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), 2018, Page(s) 1-7, ISBN 978-1-5386-4294-8
Éditeur: IEEE
DOI: 10.1109/healthcom.2018.8531149

Capturing the Reliability of Unknown Devices in the IoT World (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Chrysostomos Symvoulidis, Dimosthenis Kyriazis
Publié dans: 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, 2018, Page(s) 62-69, ISBN 978-1-5386-9585-2
Éditeur: IEEE
DOI: 10.1109/iotsms.2018.8554720

Trustworthy data processing for health analytics tasks (s’ouvre dans une nouvelle fenêtre)

Auteurs: Konstantinos Moutselos, Dimosthenis Kyriazis, Vasiliki Diamantopoulou, Ilias Maglogiannis
Publié dans: 2018 IEEE International Conference on Big Data (Big Data), 2018, Page(s) 3774-3779, ISBN 978-1-5386-5035-6
Éditeur: IEEE
DOI: 10.1109/bigdata.2018.8622449

CrowdHEALTH - Collective Wisdom Driving Public Health Policies (s’ouvre dans une nouvelle fenêtre)

Auteurs: Lydia Montandon, Dimosthenis Kyriazis, Zoe Valero-Ramon, Carlos Fernandez-Llatas, Vicente Traver
Publié dans: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 2019, Page(s) 1-3, ISBN 978-1-7281-2286-1
Éditeur: IEEE
DOI: 10.1109/cbms.2019.00010

Identification of Bluetooth-Enabled IoT Devices Through Syntactic Similarity Techniques (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Marios Touloupou, Dimosthenis Kyriazis
Publié dans: 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), 2019, Page(s) 200-205, ISBN 978-1-7281-1340-1
Éditeur: IEEE
DOI: 10.1109/icufn.2019.8806153

Delivering Reliability of Data Sources in IoT Healthcare Ecosystems (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Dimosthenis Kyriazis
Publié dans: 2019 25th Conference of Open Innovations Association (FRUCT), 2019, Page(s) 211-219, ISBN 978-952-69244-0-3
Éditeur: IEEE
DOI: 10.23919/fruct48121.2019.8981527

IoT in Healthcare: Achieving Interoperability of High-Quality Data Acquired by IoT Medical Devices (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Konstantinos Perakis, Stamatios Pitsios, Dimosthenis Kyriazis
Publié dans: Sensors, Numéro 19/9, 2019, Page(s) 1978, ISSN 1424-8220
Éditeur: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/s19091978

Structurally Mapping Healthcare Data to HL7 FHIR through Ontology Alignment (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Andreas Menychtas, Ilias Maglogiannis, Dimosthenis Kyriazis
Publié dans: Journal of Medical Systems, Numéro 43/3, 2019, ISSN 0148-5598
Éditeur: Kluwer Academic/Plenum Publishers
DOI: 10.1007/s10916-019-1183-y

Analyzing data and data sources towards a unified approach for ensuring end-to-end data and data sources quality in healthcare 4.0 (s’ouvre dans une nouvelle fenêtre)

Auteurs: Argyro Mavrogiorgou, Athanasios Kiourtis, Konstantinos Perakis, Dimitrios Miltiadou, Stamatios Pitsios, Dimosthenis Kyriazis
Publié dans: Computer Methods and Programs in Biomedicine, Numéro 181, 2019, Page(s) 104967, ISSN 0169-2607
Éditeur: Elsevier BV
DOI: 10.1016/j.cmpb.2019.06.026

Disseminating Research Outputs: The CrowdHEALTH Project (s’ouvre dans une nouvelle fenêtre)

Auteurs: Andriana Magdalinoua, John Mantas, Lydia Montandon, Patrick Weber, Parisis Gallos
Publié dans: Acta Informatica Medica, Numéro 27/5, 2019, Page(s) 348, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2019.27.348-354

The Integrated Holistic Security and Privacy Framework Deployed in CrowdHEALTH Project (s’ouvre dans une nouvelle fenêtre)

Auteurs: Stefanos Malliaros, Christos Xenakis, George Moldovan, John Mantas, Andriana Magdalinou, Lydia Montandon
Publié dans: Acta Informatica Medica, Numéro 27/5, 2019, Page(s) 333, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2019.27.333-340

Data Sources and Gateways: Design and Open Specification (s’ouvre dans une nouvelle fenêtre)

Auteurs: Konstantinos Perakis, Dimitris Miltiadou, Antonio Nigro, Francesco Torelli, Lydia Mantas, Andriana Magdalinou, Argyro Mavrogiorgou, Dimosthenis Kyriazis
Publié dans: Acta Informatica Medica, Numéro 27/5, 2019, Page(s) 341, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2019.27.341-347

Interoperability Techniques in CrowdHEALTH project: The Terminology Service (s’ouvre dans une nouvelle fenêtre)

Auteurs: Santiago Lete, Carlos Cavero, Mitja trek, Dimosthenis Kyriazis, Athanasios Kiourtis, Andriana Magdalinou, John Mantas, Lydia Montandon
Publié dans: Acta Informatica Medica, Numéro 27/5, 2019, Page(s) 355, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2019.27.355-361

Generating and Knowledge Framework: Design and Open Specification (s’ouvre dans une nouvelle fenêtre)

Auteurs: Usman Wajid, Chris Orton, Andriana Magdalinou, John Mantas, Lydia Montandon
Publié dans: Acta Informatica Medica, Numéro 27/5, 2019, Page(s) 362, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2019.27.362-368

The CrowdHEALTH project and the Hollistic Health Records: Collective Wisdom Driving Public Health Policies (s’ouvre dans une nouvelle fenêtre)

Auteurs: Dimosthenis Kyriazis, Serge Autexier, Iv Brondino, Michael Boniface, Lucas Donat, Vegard Engen, Rafael Fernandez, Ricardo Peris, Blanca Jordan, Gregor Jurak, Athanasios Kiourtis, Thanos Kosmidis, Mitja Lustrek, Ilias Maglogiannis, John Mantas, Antonio Martinez, Argyro Mavrogiorgou, Andreas Menychtas, Lydia Montandon, Cosmin Nechifor, Sokratis Nifakos, Alexandra Papageorgiou, Marta Martinez, Manuel
Publié dans: Acta Informatica Medica, Numéro 27/5, 2019, Page(s) 369, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2019.27.369-373

Advanced Interoperability Techniques: Structure Mapping Service in CrowdHEALTH Project (s’ouvre dans une nouvelle fenêtre)

Auteurs: Santiago Lete, Carlos Cavero, Andriana Magdalinou, John Mantas, Lydia Montandon
Publié dans: Acta Informatica Medica, Numéro 28/1, 2020, Page(s) 52, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2020.28.52-57

Health in All Policy Making Utilizing Big Data (s’ouvre dans une nouvelle fenêtre)

Auteurs: Alice Vassiliou, Christina Georgakopoulou, Alexandra Papageorgiou, Spiros Georgakopoulos, Spiros Goulas, Theodors Paschalis, Panagiotis Paterakis, Parisis Gallos, Dimos Kyriazis, Vassilis Plagianakos
Publié dans: Acta Informatica Medica, Numéro 28/1, 2020, Page(s) 65, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2020.28.65-70

Modelling and Evaluation of Policies (s’ouvre dans une nouvelle fenêtre)

Auteurs: Konstantinos Moutselos, Ilias Maglogiannis, Dimosthenis Kyriazis, Andrea Granados, Vassilis Plagianakos, Alexandra Papageorgiu, Septimiu Nechifor, John Mantas, Andriana Magdalinou, Lydia Montandon
Publié dans: Acta Informatica Medica, Numéro 28/1, 2020, Page(s) 58, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2020.28.58-64

Health Professionals' Perception about Big Data Technology in Greece (s’ouvre dans une nouvelle fenêtre)

Auteurs: John Minou, John Mantas, Flora Malamateniou, Daphne Kaitelidou
Publié dans: Acta Informatica Medica, Numéro 28/1, 2020, Page(s) 48, ISSN 0353-8109
Éditeur: Society of Medical Informatics of Bosnia and Herzegovina
DOI: 10.5455/aim.2020.28.48-51

Evidence-based Public Health Policy Models Development and Evaluation using Big Data Analytics and Web Technologies (s’ouvre dans une nouvelle fenêtre)

Auteurs: Konstantinos Moutselos, Ilias Maglogiannis
Publié dans: Medical Archives, Numéro 74/1, 2020, Page(s) 47, ISSN 0350-199X
Éditeur: "Drutvo ljekara SR Bosne i Hercegovine : ""Avicena"" d.o.o"
DOI: 10.5455/medarh.2020.74.47-53

Classification Techniques for Cardio- Vascular Diseases Using Supervised Machine Learning (s’ouvre dans une nouvelle fenêtre)

Auteurs: John Minou, John Mantas, Flora Malamateniou, Daphne Kaitelidou
Publié dans: Medical Archives, Numéro 74/1, 2020, Page(s) 39, ISSN 0350-199X
Éditeur: "Drutvo ljekara SR Bosne i Hercegovine : ""Avicena"" d.o.o"
DOI: 10.5455/medarh.2020.74.39-41

EFMI (s’ouvre dans une nouvelle fenêtre)

Auteurs: Christian Lovis, George Mihalas, John Mantas, Niels Peek, Ran Balicer, Izet Masic, Lacramioara Stoicu-Tivadar
Publié dans: Yearbook of Medical Informatics, Numéro 27/01, 2018, Page(s) 296-301, ISSN 0943-4747
Éditeur: IMIA, Schattauer
DOI: 10.1055/s-0038-1641209

A String Similarity Evaluation for Healthcare Ontologies Alignment to HL7 FHIR Resources (s’ouvre dans une nouvelle fenêtre)

Auteurs: Athanasios Kiourtis, Argyro Mavrogiorgou, Sokratis Nifakos, Dimosthenis Kyriazis
Publié dans: Intelligent Computing - Proceedings of the 2019 Computing Conference, Volume 1, Numéro 997, 2019, Page(s) 956-970, ISBN 978-3-030-22870-5
Éditeur: Springer International Publishing
DOI: 10.1007/978-3-030-22871-2_68

Recherche de données OpenAIRE...

Une erreur s’est produite lors de la recherche de données OpenAIRE

Aucun résultat disponible

Mon livret 0 0