Objective
Urban water management becomes progressively more challenging in the view of population growth and increasing complexity of water management infrastructure. In this line, there is an ever increase demand from the water providers’ and public authorities’ perspective to critically evaluate the existing water ecosystems at city level in respect to the water supply, waste water treatment, reuse potential and the effect the growing population has on the water ecosystem and endangered species. To enable effective decision making at the entire city level, both surface water and groundwater should be viewed as part of the overall urban water ecosystem with its spatio-temporal availability, quantity and quality and competing uses being taken into account.
The Water4Cities project will rely on sensor technologies, data and visual analytics to enable localization, visualization and analysis of urban water (both surface water and groundwater) at a holistic urban setting providing services to multiple water stakeholders. More specifically, the Water4Cities project aims to develop the necessary models and associated platform that will enable water providers and relevant stakeholders to a) monitor in real-time the urban water resources; b) support their decisions for optimal urban water management causing minimal environmental impact and c) involve policy makers, corporations and the public to provide the support for sound and balanced decision-making. Beyond the scientific results, Water4Cities will target the exchange of knowledge among project partners. The Water4Cities project requires the collaboration of researchers in different research areas, i.e. water management, urban infrastructure management, sensor networks, data mining, data visualization, system integration, urban planning. Due to the multi-disciplinary nature of the project, staff exchanges will allow partners working closely together to deliver high quality results.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering water treatment processes wastewater treatment processes
- natural sciences computer and information sciences data science data mining
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- engineering and technology environmental engineering natural resources management water management
- engineering and technology civil engineering structural engineering hydraulic engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.3. - Stimulating innovation by means of cross-fertilisation of knowledge
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-RISE - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-RISE-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38 221 VOLOS
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.