Objective
"Thermal conductivity (TC) is a key characteristic of many materials, particularly those used in the energy and environment sectors (thermoelectrics, thermal-barrier coatings, catalysis, etc.). However, TC is largely unknown − of the 225,000 identified inorganic semiconductor and insulator crystals, only 100 have any TC data available.
By combining a novel ab initio molecular dynamics TC theory and big-data analytics (machine learning, compressed sensing, subgroup discovery), we will generate quantitative values and understanding of TC (and electrical conductivity (EC)) for most of these 225,000 materials, as well as for materials not yet discovered.
TEC1p will develop and deploy five key approaches. Individually these are already novel for materials science, but their combination in TEC1p enables a true breakthrough.
These five components are:
1) Ab initio theory of TC 3 (advanced density-functional theory, seamlessly linked to size- and time-converged statistical mechanics).
2) Ab initio theory of EC (advanced …; see #1).
3) Compressed sensing to identify a set of physical parameters that describe the TC and EC behaviour and to derive predictive equations that work for all materials.5
4) Active learning to build a systematic big-data database of materials, their TCs and ECs.
5) Subgroup discovery to recognise trends and anomalies in the big data, enhance the active learning, and elucidate the underlying physical mechanisms.
In analogy to Mendeleev’s table of the elements, we will build maps that arrange existing and predicted materials according to their TC and EC properties.
The methods that we will develop and the extensive calculations that we will execute are both innovative and timely. They will greatly progress scientific knowledge of the physical properties of materials. The impact of the concepts, methodology, and results will be far reaching for materials science, novel materials discovery, engineering,"
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences computer and information sciences databases
- engineering and technology materials engineering coating and films
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.