Objective Understanding, controlling, and predicting the subtle interactions that hydrocarbons form with metals is a major challenge in molecular science, and a key technology enabler in areas such as homogeneous catalysis, drug recognition, polymer properties, and metal recovery. For the f-block, it is important due to the urgent need for clean access to critical elements such as neodymium, and the safe handling of nuclear waste. However, technical challenges of paramagnetism, radiotoxicity, and relativistic effects, make quantifying and exploiting f-block hydrocarbon interactions very hard using traditional methods or calculations alone. We have used organometallic systems to study two types of poorly understood hydrocarbon interactions with f-block metal cations: arene binding which is stronger, yet controversial in terms of its electronic demands, and neutral hydrocarbon C-H bonding which is weaker, yet crucially reaction controlling. f-ex sets out a new way to experimentally measure and define these subtle hydrocarbon interactions. It then exploits the stored electrons in the metal-arene motif as a new method to control these powerful Lewis acidic metals for new hydrocarbon C-element bond formation and inert hydrocarbon C-H bond cleavage, with the ultimate aim of viable, low-energy hydrocarbon functionalisations. Uniquely, we will extend our organometallic work to the more difficult transuranic elements, and exploit high pressure solution (and single crystal) work to enhance and interrogate intermolecular C-H binding. The targets of this combined study now offer high scientific impact by demonstrating fundamental bonding insight and ground-breaking structures and reactions.Unprecedented new insight also derives from incorporating new techniques, e.g. high-pressure solution and single crystal work, and transuranic organometallic chemistry. Fields of science engineering and technologyother engineering and technologiesnuclear engineeringnuclear waste managementnatural scienceschemical sciencesinorganic chemistryorganometallic chemistrynatural scienceschemical sciencesorganic chemistryhydrocarbonsnatural scienceschemical sciencespolymer sciencesnatural scienceschemical sciencescatalysis Keywords rare earth actinide organometallic x-ray structure small molecule activation Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2016-ADG - ERC Advanced Grant Call for proposal ERC-2016-ADG See other projects for this call Funding Scheme ERC-ADG - Advanced Grant Coordinator THE UNIVERSITY OF EDINBURGH Net EU contribution € 2 456 120,00 Address Old college, south bridge EH8 9YL Edinburgh United Kingdom See on map Region Scotland Eastern Scotland Edinburgh Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all THE UNIVERSITY OF EDINBURGH United Kingdom Net EU contribution € 2 456 120,00 Address Old college, south bridge EH8 9YL Edinburgh See on map Region Scotland Eastern Scotland Edinburgh Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00