Skip to main content

Quantum Emitters in non-conventional baths

Objective

The coupling of quantum emitters to a common bath gives rise to intriguing quantum optical phenomena, like super-radiance, non-Markovian dynamics, or dipole-dipole interactions. In recent years, new experimental setups are emerging where non-conventional baths, with tailored dispersion relations, can be produced. In particular, atoms (the emitters) can be kept in the proximity of photonic crystals (the bath), whose properties can be engineered thanks to the spectacular progress experienced in nano-fabrication techniques. Low dimensional mate- rials, dispersion relations with Dirac points, or exotic topological features can be designed in photonic crystals, which will dramatically affect the behavior of the emitters. In this scenario, exotic phenomena, unique possibilities for quantum simulation of both coherent and dissipa- tive dynamics, as well as advanced applications are expected to appear. Presently, a new research area is emerging to investigate the physics of emitters coupled to non- conventional baths.

In this project we will: (i) develop the theoretical tools required to investigate this new area; (ii) explore and characterize novel phenomena; and (iii) propose and analyze other physical setups where those phenomena can be observed and exploited (in the context of quantum information and simulation). The research will involve the development of innovative tech- niques to describe new scenarios in quantum optics and many-body physics, as well as re- search on atoms interacting with photonic crystals, in optical lattices, and quantum dots in- teracting with surface acoustic waves.

This interdisciplinary project involves concepts and ideas from quantum optics, many-body quantum physics, and quantum information, research fields where the PI has a vast experi- ence. This, together with a close collaboration with leading experimentalists will provide us with a unique environment for the successful accomplishment of the objectives of the project.

Call for proposal

ERC-2016-ADG
See other projects for this call

Funding Scheme

ERC-ADG - Advanced Grant

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Address
Hofgartenstrasse 8
80539 Muenchen
Germany
Activity type
Research Organisations
EU contribution
€ 1 872 968,75

Beneficiaries (1)

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Germany
EU contribution
€ 1 872 968,75
Address
Hofgartenstrasse 8
80539 Muenchen
Activity type
Research Organisations